• Title/Summary/Keyword: Pho

Search Result 86, Processing Time 0.032 seconds

Phosphate Deficiency Stress Response Mediated by Pho Regulon in Bacillus subtilis (Bacillus subtilis의 Pho Regulon을 통한 인산 결핍 스트레스 반응)

  • Park, Jae-Yong
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • Bacillus subtilis PhoP-PhoR two-component system (TCS) senses phosphate deficiency conditions, and then controls expression of the Pho regulon to prolong survival. The sensor histidine kinase, PhoR, is autophosphorylated and transfers the phosphate to the response regulator, PhoP. Phosphorylated PhoP (PhoP~P) binds to repeated 6-bp consensus PhoP binding sequences of Pho regulon promoters and activates or represses gene expression. Pho signal transduction systems are part of interconnected signal transduction network involving at least three TCSs (PhoP-PhoR, ResD-ResE TCS, SpoOA phosphorelay), a global carbon metabolism regulator (CcpA), and transition state regulators (AbrB, ScoC). In addition, PhoP-PhoR TCS is cross related with YycF-YycG TCS by cross-regulation. While indescribable progress has been made in understanding phosphate deficiency stress response through refined expression of the Pho regulon in the recent past years, many important questions still remain. Solving these questions may provide important information for application study using B. subtilis.

Bone Mineral Density of Normal Korean Adult Using QCT (적량적 전산화단층촬영을 이용한 한국인의 골밀도)

  • Lee Jong Deok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1918-1926
    • /
    • 2004
  • Osteoporosis is defined as a progressive systemic skeletal disorder characterized by low bone mineral density, microarchitectual deteriorations of bone and susceptibility to fracture. numerous methods have been used for quantitative assessment of the skeleton in osteoporosis. QCT has been shown to measure changes in trabecular mineral content in the spine with great sensitivity and precision. To provide the normal reference values and changes of lumbar spinal bone mineral density in korean adult spinal bone mineral density was evaluated in 451 women (229 premenopausal and 222 postmenopausal women) and 206 men, aged 20 to 74 years old in Wonkwang hospital from 2000 to 2004, which was carried out by using QCT. women with oophorectomy, vertebral compression fracture, any history of endocrine disease and use of drugs that alter bone metabolism were excluded. According to the WHO definition, a patient is osteoporotic based on a bone mineral density(BMD) measurement that is 2.5 standard deviations (SDs) below typical peak bone mass of young healthy white women. This measurement of standard deviation from peak mass is called the T score. BMD values of normal women in their 20-24 years, 25-29 years, 30-34 years, 35-39 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, 65-69 years, over 70 years were 168.95㎎/㏄ K₂PHO₄, 155.41㎎/㏄ K₂PHO₄, 166.87㎎/㏄ K₂PHO₄, 160.67㎎/㏄ K₂PHO₄, 154.06㎎/㏄ K₂PHO₄, 132.04㎎/㏄ K₂PHO₄, 114.05㎎/㏄ K₂PHO₄, 91.78㎎/㏄ K₂PHO₄, 78.61 ㎎/㏄ K₂PHO₄, 61.35㎎/㏄ K₂PHO₄, 50.53㎎/㏄ K₂PHO₄ Mean bone density of normal women was 115.77K₂PHO₄ K₂PHO₄. BMD values of normal men in their 20-24 years, 25-29 years, 30-34 years, 35-39 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64 years, 65-69 years, over 70 years were 171.46㎎/㏄ K₂PHO₄, 162.19㎎/㏄ K₂PHO₄, 155.62㎎/㏄ K₂PHO₄, 147.28㎎/㏄ K₂PHO₄, 137.56㎎/㏄ K₂PHO₄, 137.56㎎/㏄ K₂PHO₄, 101.25㎎/㏄ K₂PHO₄, 109.00㎎/㏄ K₂PHO₄, 103.32㎎/㏄ K₂PHO₄, 91.53㎎/㏄ K₂PHO₄, 88.35㎎/㏄ K₂PHO₄ Mean density of normal men was 115.77㎎/㏄ K₂PHO₄. Peak bone density of women and men was in the age group of 20-24 years and 168.95㎎/㏄ K₂PHO₄, 171.46㎎/㏄ K₂PHO₄, respectively. Bone loss was increased with aging and was accelerated in postmenopausal women than that of premenopausal women. The total loss of BMD for women and men was 70.09% and 48.47%, respectively. Postmenopausal women(mean BMD : 85.83㎎/㏄ K₂PHO₄) had significantly lower BMD than premenopausal women(meand BMD : 144.80㎎/㏄ K₂PHO₄)(p<0.001). The annual loss of BMD of women and men was 2.702㎎/㏄ K₂PHO₄ and 1.795㎎/㏄ K₂PHO₄, respectively. This study provided the BMD reference data for normal korean adult. further studies on BMD in healthy adult and comparison with published data are needed.

Transcriptome Analysis of Phosphate Starvation Response in Escherichia coli

  • Baek, Jong-Hwan;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.244-252
    • /
    • 2007
  • Escherichia coli has a PhoR-PhoB two-component regulatory system to detect and respond to the changes of environmental phosphate concentration. For the E. coli W3110 strain growing under phosphate-limiting condition, the changes of global gene expression levels were investigated by using DNA microarray analysis. The expression levels of some genes that are involved in phosphate metabolism were increased as phosphate became limited, whereas those of the genes involved in ribosomal protein or amino acid metabolism were decreased, owing to the stationary phase response. The upregulated genes could be divided into temporarily and permanently inducible genes by phosphate starvation. At the peak point showing the highest expression levels of the phoB and phoR genes under phosphate-limiting condition, the phoB- and/or phoR-dependent regulatory mechanisms were investigated in detail by comparing the gene expression levels among the wild-type and phoB and/or phoR mutant strains. Overall, the phoB mutation was epistatic over the phoR mutation. It was found that PhoBR and PhoB were responsible for the upregulation of the phosphonate or glycerol phosphate metabolism and high-affinity phosphate transport system, respectively. These results show the complex regulation by the PhoR-PhoB two-component regulatory system in E. coli.

Membrane-Bound Protease FtsH Protects PhoP from the Proteolysis by Cytoplasmic ClpAP Protease in Salmonella Typhimurium

  • Hyungkeun Song;Eunna Choi ;Eun-Jin Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1130-1140
    • /
    • 2023
  • Among the AAA+ proteases in bacteria, FtsH is a membrane-bound ATP-dependent metalloprotease, which is known to degrade many membrane proteins as well as some cytoplasmic proteins. In the intracellular pathogen Salmonella enterica serovar Typhimurium, FtsH is responsible for the proteolysis of several proteins including MgtC virulence factor and MgtA/MgtB Mg2+ transporters, the transcription of which is controlled by the PhoP/PhoQ two-component regulatory system. Given that PhoP response regulator itself is a cytoplasmic protein and also degraded by the cytoplasmic ClpAP protease, it seems unlikely that FtsH affects PhoP protein levels. Here we report an unexpected role of the FtsH protease protecting PhoP proteolysis from cytoplasmic ClpAP protease. In FtsH-depleted condition, PhoP protein levels decrease by ClpAP proteolysis, lowering protein levels of PhoP-controlled genes. This suggests that FtsH is required for normal activation of PhoP transcription factor. FtsH does not degrade PhoP protein but directly binds to PhoP, thus sequestering PhoP from ClpAP-mediated proteolysis. FtsH's protective effect on PhoP can be overcome by providing excess ClpP. Because PhoP is required for Salmonella's survival inside macrophages and mouse virulence, these data implicate that FtsH's sequestration of PhoP from ClpAP-mediated proteolysis is a mechanism ensuring the amount of PhoP protein during Salmonella infection.

Analysis of Genes Involved in the Pathogenesis of Intracellularly Survival Bacteria (세포내 기생세균의 병원성 관련 유전자의 분석에 관하여)

  • Jeon, Tae-Il;Lee, Tae-Yoon;Kim, Sung-Kwang
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.248-255
    • /
    • 1992
  • Eight bacterial strains were examined whether they have phoP/phoQ genes which were known to be involved in the intracellular survival of Salmonella typhimurium. The phoP/phoQ operon were known to sense the stimuli of the genes involved in the adaptation of the environment. Using 514-basepairs EcoRV DNA fragment of phoP region of Salmonella typhimurium as a probe, dot blot hybridization were performed. Chromosomal DNAs of Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marscescens, Enterobacter cloacae, Salmonella typhimurium, Escherichia coli, Shigella dysenteriae, and Listeria monocytogenes were examined by DNA hybridization assay. Against our expectation, intracellular pathogen, L. monocytogenes, did not have similar DNA sequences to phoP/phoQ of S. typhimurium, while E. coli, S. dysenteriae, and E. cloacae showed the positive signal even though they were not intracellular pathogens. This result suggested that the phoP/PhoQ operon was absent in intracellular pathogenic bacterias other than S. typhimurium. Rather it was found in phylogenetically closer bacterias to S. typhimurium, which were not able to survive in intracellular environment. Some different mechanism, which is not dependent on phoP/PhoQ operon, could be involved in the intracelluar survival of L. monocytogenes.

  • PDF

Cloning and Sequencing of the phoA Gene which is Regulated by the phoP-phoQ Operon in Pathogenic Enteric Bacteria (병원성장내세균에서 phoP-phoQ operon의 지배를 받는 phoA 유전자의 cloning 및 염기서열결정)

  • Kim, Sung-Kwang;Lee, Tae-Yoon
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.2
    • /
    • pp.237-245
    • /
    • 1995
  • The DNA fragment containing the phoA of Klebsiella pneumoniae was cloned into pACYC184. The size of the insert was 4.0 kb and the restriction map showed it contained 3 PstI sites and 4 PvuII sites. The nucleotide sequence of the phoA region was determined, which showed strong (80 %) sequence similarity with that of Escherichia coli. This suggested that these two species are phylogenetically very close to each other.

  • PDF

Phenoloxidases and Photomorphogenesis in Coprinus congregatus (Coprinus congregatus의 분화와 Phenoloxidase와의 관계)

  • 최형태
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.157-167
    • /
    • 1987
  • The have been many reports that phenoloxidase are correlated with development in many fungi. C. congregatus, one of nushroom-forming basidiomycetes, which requires light for its development also has phenoloxidases. In C. congragatus, there are two sets of membrane-associated phenoloxidase (PHO I and PHO II) which are differentiated by their isozyme patterns, and each enzyme set consists of two different subtrate specific enzyme protein; o-tolidine reacting enzyme, and DOPA reacting enzyme. PHO I which is localized by a protoplast-concanavalin A technique by using a new solidifying agent, Pluronic Polyol F 127, instead of agar appears in the vegetative hyphae, and PHO II appears at the early primordial stage on agar and at the sclerotial stage of liquid shake cultures. Inhibition of PHO I with the enzyme inhibitors inhibits mushroom formation as well as melanization of the vegetative hyphae at concentrations which do not inhibit the vegetative growth. PHO I deficient mutants do not form mushrooms or melanins, and the mutants show abnormal nuclear migration patterns. PHO II has roles; possibly cementing the adjacent hyphae during the actual three dimensonal structure formation, and melanizing mushrooms and sclerotia. The possible roles of PHO I in the light reception complex and in melanin formation, the function of malanin, and possible roles of postulated post translational modifying enzymes which regulate the phenoloxidases, nuclear migration pattern, and self-nonself recognition mechanism are discussed.

  • PDF

Pathways Regulating the pbgP Operon and Colistin Resistance in Klebsiella pneumoniae Strains

  • Choi, Myung-Jin;Kim, Sunju;Ko, Kwan Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1620-1628
    • /
    • 2016
  • In this study, we investigated colistin resistance mechanisms associated with the regulation of the pbgP operon in Klebsiella pneumoniae, using four isogenic pairs of colistin-susceptible strains and their colistin-resistant derivatives and two colistin-resistant clinical isolates. Amino acid sequence alterations of PhoPQ, PmrAB, and MgrB were investigated, and mRNA expression levels of phoQ, pmrB, pmrD, and pbgP were measured using quantitative real-time PCR. The phoQ and pmrB genes were deleted from two colistin-resistant derivatives, 134R and 063R. We found that phoQ, pmrD, and pbgP were significantly upregulated in all colistin-resistant derivatives. However, pmrB was significantly upregulated in only two colistin-resistant derivatives and one clinical strain. pmrB was not overexpressed in the other strains. The minimum inhibitory concentration of colistin was drastically lower in both phoQ- and pmrB-deleted mutants from a colistin-resistant derivative (134R) that was overexpressing phoQ and pmrB. However, colistin susceptibility was restored only in a phoQ-deleted mutant from a colistin-resistant derivative (063R) without overexpression of pmrB. In conclusion, two different regulations of the pbgP operon may associate with the development of colistinresisant K. pneumoniae.

Bacterial Phosphate Homeostasis: Role of Phosphate Transporters (세균의 인산 항상성: 인산 수송 단백질들의 역할)

  • Park, Yoon-Mee;Bang, Iel-Soo
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Phosphorous is an essential element for the synthesis of various biomolecules including phospholipids, carbohydrates and nucleic acids. Bacterial cells can uptake it as forms of phosphate and phosphate-containing nutrients from extracellular environments, and reserve extra phosphate to polyphosphate inside the cell. Among five phosphate transport systems, Pst plays central roles in phosphate transport, and its expression is coordinated by the regulation of PhoB-PhoR two component signal transduction system in response to extracellular levels of phosphate. Genomic studies on the response regulator PhoB reveal many genes independent of phosphate metabolism. Based on recent findings on phenotypes of bacteria lacking proper function of each phosphate transport system, this review discusses roles of phosphate transporters in maintaining optimum intracellular phosphate levels, and presents diverse phenotypes of phosphate transporters related with other environmental signals as well as phosphate, then finally points out functional redundancy among phosphate transport systems or their regulators, which emphasize importance of phosphate homeostasis in governing metabolism, adaptation, and virulence of bacteria.

Construction of the Phosphate-Limitation Inducible Expression Vector Containing the phoA Promoter of Enterobacter aerogenes (Enterobacter aerogenes 의 phoA 유전자 Promoter를 이용한 인 제한환경에서 발현하는 벡터 구축)

  • 장화형;고병훈;박신영;이성호;김성진;임유정;한갑진;김영호;이영근
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.318-321
    • /
    • 2002
  • To induce recombinant protein under phosphate restricted conditions such as soil, we have constructed the expression vector (pEAAP) with phoA gene promoter of Enterobacter aerogenes. To construct the pEAAP, deletion of the T7 promoter and lac operator from pET-22b(+) by BglII-XhoI digestion and addition of the phoA gene promoter (containing the pho box) were performed. To test pEAAP as an expression vector controled by phosphate limitation, pEAPHY1 was constructed with the phytate gene (Bsa-phy1) of Bacillus subtillis var. amyloliquefaciens (KCTC 8913P). Under the phosphate-limitation condition, CK-PHY1 ( Escherichia coli JM109 was transformed with pEAPHY1) expressed the 41 kD Bsa-Phy1 . Also CK-PHY1 formed the clear zone in solid medium containing phytate as a sole phosphate source.