DOI QR코드

DOI QR Code

Bacterial Phosphate Homeostasis: Role of Phosphate Transporters

세균의 인산 항상성: 인산 수송 단백질들의 역할

  • Park, Yoon-Mee (Department of Microbiology and Immunology, Chosun University School of Dentistry) ;
  • Bang, Iel-Soo (Department of Microbiology and Immunology, Chosun University School of Dentistry)
  • 박윤미 (조선대학교 치의학전문대학원 미생물학 및 면역학 교실) ;
  • 방일수 (조선대학교 치의학전문대학원 미생물학 및 면역학 교실)
  • Received : 2012.06.11
  • Accepted : 2012.06.27
  • Published : 2012.06.30

Abstract

Phosphorous is an essential element for the synthesis of various biomolecules including phospholipids, carbohydrates and nucleic acids. Bacterial cells can uptake it as forms of phosphate and phosphate-containing nutrients from extracellular environments, and reserve extra phosphate to polyphosphate inside the cell. Among five phosphate transport systems, Pst plays central roles in phosphate transport, and its expression is coordinated by the regulation of PhoB-PhoR two component signal transduction system in response to extracellular levels of phosphate. Genomic studies on the response regulator PhoB reveal many genes independent of phosphate metabolism. Based on recent findings on phenotypes of bacteria lacking proper function of each phosphate transport system, this review discusses roles of phosphate transporters in maintaining optimum intracellular phosphate levels, and presents diverse phenotypes of phosphate transporters related with other environmental signals as well as phosphate, then finally points out functional redundancy among phosphate transport systems or their regulators, which emphasize importance of phosphate homeostasis in governing metabolism, adaptation, and virulence of bacteria.

인은 인지질, 탄수화물 및 핵산 등의 생분자 합성에 필요한 원소이다. 세균은 외부환경으로부터 인산이나 인산을 포함하는 영양소를 흡수하여 인을 얻고, 세포대사에 사용되고 남은 인산은 polyphosphate 형태로 저장한다. 현재까지 알려진 다섯 개의 인산 수송 시스템 중, 인산에 특이적으로 높은 친화력을 갖는 Pst 시스템이 가장 중요한 역할을 하며, 그 발현은 세포외부 인산 농도에 반응하는 PhoB-PhoR two component 신호전달 시스템에 의해 조절된다. 반응 조절 단백질 PhoB는 인산 대사뿐 아니라 이와 관계없는 유전자들의 전사를 조절하는 것으로 알려졌으며, 따라서 PhoB의 활성이 조절되지 않으면 많은 종류의 다른 표현형이 나타난다. 본 총설은 각 인산 수송 시스템의 기능이 결여된 세균의 표현형에 대한 최근 연구 결과를 토대로 다음과 같은 내용을 기술하였다. 첫째, 세포 내부 인산의 적정 농도 유지를 위한 인산 수송 시스템들의 역할, 둘째, 인산뿐 아니라 여타 환경 신호와 관련된 수송 시스템의 다양한 표현형, 그리고 마지막으로, 수송 시스템들 간 혹은 그 조절자들 간의 표현형 중복을 분류하여 제시하였다. 이러한 내용은 결국 세균의 대사, 적응반응 및 병원성 발현에 미치는 인산 항상성의 중요성을 강조한다.

Keywords

References

  1. Aguena, M., Yagil, E., and Spira, B. 2002. Transcriptional analysis of the pst operon of Escherichia coli. Mol. Genet. Genomics 268, 518-524. https://doi.org/10.1007/s00438-002-0764-4
  2. Auesukaree, C., Homma, T., Tochio, H., Shirakawa, M., Kaneko, Y., and Harashima, S. 2004. Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J. Biol. Chem. 279, 17289-17294. https://doi.org/10.1074/jbc.M312202200
  3. Ault-Riche, D., Fraley, C.D., Tzeng, C.M., and Kornberg, A. 1998. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180, 1841-1847.
  4. Baek, J.H., Kang, Y.J., and Lee, S.Y. 2007. Transcript and protein level analyses of the interactions among PhoB, PhoR, PhoU and CreC in response to phosphate starvation in Escherichia coli. FEMS Microbiol. Lett. 277, 254-259. https://doi.org/10.1111/j.1574-6968.2007.00965.x
  5. Baek, J.H. and Lee, S.Y. 2006. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol. Lett. 264, 104-109. https://doi.org/10.1111/j.1574-6968.2006.00440.x
  6. Battesti, A., Majdalani, N., and Gottesman, S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65, 189-213. https://doi.org/10.1146/annurev-micro-090110-102946
  7. Bauer, K., Benz, R., Brass, J., and Boos, W. 1985. Salmonella typhimurium contains an anion-selective outer membrane porin induced by phosphate starvation. J. Bacteriol. 161, 813-816.
  8. Beard, S.J., Hashim, R., Wu, G., Binet, M.R., Hughes, M.N., and Poole, R.K. 2000. Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. 184, 231-235. https://doi.org/10.1111/j.1574-6968.2000.tb09019.x
  9. Bhatt, K., Banerjee, S.K., and Chakraborti, P.K. 2000. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis. Eur. J. Biochem. 267, 4028- 4032. https://doi.org/10.1046/j.1432-1327.2000.01437.x
  10. Birkey, S.M., Sun, G., Piggot, P.J., and Hulett, F.M. 1994. A pho regulon promoter induced under sporulation conditions. Gene 147, 95-100. https://doi.org/10.1016/0378-1119(94)90045-0
  11. Borsetti, F., Toninello, A., and Zannoni, D. 2003. Tellurite uptake by cells of the facultative phototroph Rhodobacter capsulatus is a Delta pH-dependent process. FEBS Lett. 554, 315-318. https://doi.org/10.1016/S0014-5793(03)01180-3
  12. Buckles, E.L., Wang, X., Lockatell, C.V., Johnson, D.E., and Donnenberg, M.S. 2006. PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152, 153-160. https://doi.org/10.1099/mic.0.28281-0
  13. Budin-Verneuil, A., Pichereau, V., Auffray, Y., Ehrlich, D., and Maguin, E. 2007. Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363. Proteomics 7, 2038-2046. https://doi.org/10.1002/pmic.200600773
  14. Burall, L.S., Harro, J.M., Li, X., Lockatell, C.V., Himpsl, S.D., Hebel, J.R., Johnson, D.E., and Mobley, H.L. 2004. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922-2938. https://doi.org/10.1128/IAI.72.5.2922-2938.2004
  15. Carmany, D.O., Hollingsworth, K., and McCleary, W.R. 2003. Genetic and biochemical studies of phosphatase activity of PhoR. J. Bacteriol. 185, 1112-1115. https://doi.org/10.1128/JB.185.3.1112-1115.2003
  16. Castaneda-Garcia, A., Rodriguez-Rojas, A., Guelfo, J.R., and Blazquez, J. 2009. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J. Bacteriol. 191, 6968-6974. https://doi.org/10.1128/JB.00748-09
  17. Cesselin, B., Ali, D., Gratadoux, J.J., Gaudu, P., Duwat, P., Gruss, A., and El Karoui, M. 2009. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis. Microbiology 155, 2274-2281. https://doi.org/10.1099/mic.0.027797-0
  18. Chakraborti, P.K., Bhatt, K., Banerjee, S.K., and Misra, P. 1999. Role of an ABC importer in mycobacterial drug resistance. Biosci. Rep. 19, 293-300. https://doi.org/10.1023/A:1020598324663
  19. Chan, F.Y. and Torriani, A. 1996. PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J. Bacteriol. 178, 3974-3977. https://doi.org/10.1128/jb.178.13.3974-3977.1996
  20. Chavez, F.P., Mauriaca, C., and Jerez, C.A. 2009. Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria. BMC Res. Notes 2, 50. https://doi.org/10.1186/1756-0500-2-50
  21. Cheng, C., Tennant, S.M., Azzopardi, K.I., Bennett-Wood, V., Hartland, E.L., Robins-Browne, R.M., and Tauschek, M. 2009. Contribution of the pst-phoU operon to cell adherence by atypical enteropathogenic Escherichia coli and virulence of Citrobacter rodentium. Infect. Immun. 77, 1936-1944. https://doi.org/10.1128/IAI.01246-08
  22. Crepin, S., Chekabab, S.M., Le Bihan, G., Bertrand, N., Dozois, C.M., and Harel, J. 2011. The Pho regulon and the pathogenesis of Escherichia coli. Vet. Microbiol. 153, 82-88. https://doi.org/10.1016/j.vetmic.2011.05.043
  23. Critzer, F.J., D'Souza, D.H., Saxton, A.M., and Golden, D.A. 2010. Increased transcription of the phosphate-specific transport system of Escherichia coli O157:H7 after exposure to sodium benzoate. J. Food Prot. 73, 819-824. https://doi.org/10.4315/0362-028X-73.5.819
  24. De Groote, V.N., Fauvart, M., Kint, C.I., Verstraeten, N., Jans, A., Cornelis, P., and Michiels, J. 2011. Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. J. Med. Microbiol. 60, 329-336. https://doi.org/10.1099/jmm.0.019703-0
  25. Diaz, M., Esteban, A., Fernandez-Abalos, J.M., and Santamaria, R.I. 2005. The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151, 2583-2592. https://doi.org/10.1099/mic.0.27983-0
  26. Esteban, A., Diaz, M., Yepes, A., and Santamaria, R.I. 2008. Expression of the pstS gene of Streptomyces lividans is regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiol. 8, 201. https://doi.org/10.1186/1471-2180-8-201
  27. Ferreira, G.M. and Spira, B. 2008. The pst operon of enteropathogenic Escherichia coli enhances bacterial adherence to epithelial cells. Microbiology 154, 2025-2036. https://doi.org/10.1099/mic.0.2008/016634-0
  28. Fischer, R.J., Oehmcke, S., Meyer, U., Mix, M., Schwarz, K., Fiedler, T., and Bahl, H. 2006. Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J. Bacteriol. 188, 5469-5478. https://doi.org/10.1128/JB.00491-06
  29. Fisher, S.L., Kim, S.K., Wanner, B.L., and Walsh, C.T. 1996. Kinetic comparison of the specificity of the vancomycin resistance VanS for two response regulators, VanR and PhoB. Biochemistry 35, 4732-4740. https://doi.org/10.1021/bi9525435
  30. Fraley, C.D., Rashid, M.H., Lee, S.S., Gottschalk, R., Harrison, J., Wood, P.J., Brown, M.R., and Kornberg, A. 2007. A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc. Natl. Acad. Sci. USA 104, 3526-3531. https://doi.org/10.1073/pnas.0609733104
  31. Gangaiah, D., Kassem, II, Liu, Z., and Rajashekara, G. 2009. Importance of polyphosphate kinase 1 for Campylobacter jejuni viable-butnonculturable cell formation, natural transformation, and antimicrobial resistance. Appl. Environ. Microbiol. 75, 7838-7849. https://doi.org/10.1128/AEM.01603-09
  32. Gebhard, S., Ekanayaka, N., and Cook, G.M. 2009. The low-affinity phosphate transporter PitA is dispensable for in vitro growth of Mycobacterium smegmatis. BMC Microbiol. 9, 254. https://doi.org/10.1186/1471-2180-9-254
  33. Geiger, O., Rohrs, V., Weissenmayer, B., Finan, T.M., and Thomas- Oates, J.E. 1999. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl- N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol. Microbiol. 32, 63-73. https://doi.org/10.1046/j.1365-2958.1999.01325.x
  34. Gristwood, T., Fineran, P.C., Everson, L., Williamson, N.R., and Salmond, G.P. 2009. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol. 9, 112. https://doi.org/10.1186/1471-2180-9-112
  35. Hoffer, S.M., van Uden, N., and Tommassen, J. 2001. Expression of the pho regulon interferes with induction of the uhpT gene in Escherichia coli K-12. Arch. Microbiol. 176, 370-376. https://doi.org/10.1007/s002030100339
  36. Hsieh, Y.J. and Wanner, B.L. 2010. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198-203. https://doi.org/10.1016/j.mib.2010.01.014
  37. Huang, Y., Lemieux, M.J., Song, J., Auer, M., and Wang, D.N. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616-620. https://doi.org/10.1126/science.1087619
  38. Hulett, F.M., Lee, J., Shi, L., Sun, G., Chesnut, R., Sharkova, E., Duggan, M.F., and Kapp, N. 1994. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. J. Bacteriol. 176, 1348-1358. https://doi.org/10.1128/jb.176.5.1348-1358.1994
  39. Jackson, R.J., Binet, M.R., Lee, L.J., Ma, R., Graham, A.I., McLeod, C.W., and Poole, R.K. 2008. Expression of the PitA phosphate/metal transporter of Escherichia coli is responsive to zinc and inorganic phosphate levels. FEMS Microbiol. Lett. 289, 219-224. https://doi.org/10.1111/j.1574-6968.2008.01386.x
  40. Jacobsen, S.M., Lane, M.C., Harro, J.M., Shirtliff, M.E., and Mobley, H.L. 2008. The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection. FEMS Immunol. Med. Microbiol. 52, 180-193. https://doi.org/10.1111/j.1574-695X.2007.00358.x
  41. Jahid, I.K., Silva, A.J., and Benitez, J.A. 2006. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl. Environ. Microbiol. 72, 7043-7049. https://doi.org/10.1128/AEM.00924-06
  42. Kato, J., Yamamoto, T., Yamada, K., and Ohtake, H. 1993. Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppk) of Klebsiella aerogenes. Gene 137, 237-242. https://doi.org/10.1016/0378-1119(93)90013-S
  43. Kim, H.J., Yang, K.Y., Cho, B.H., Kim, K.Y., Lee, M.C., Kim, Y.H., Anderson, A.J., and Kim, Y.C. 2007. Transcript accumulation from the rpoS gene encoding a stationary-phase sigma factor in Pseudomonas chlororaphis strain O6 is regulated by the polyphosphate kinase gene. Curr. Microbiol. 54, 219-223. https://doi.org/10.1007/s00284-006-0361-6
  44. Kim, S.K., Makino, K., Amemura, M., Nakata, A., and Shinagawa, H. 1995. Mutational analysis of the role of the first helix of region 4.2 of the sigma 70 subunit of Escherichia coli RNA polymerase in transcriptional activation by activator protein PhoB. Mol. Gen. Genet. 248, 1-8. https://doi.org/10.1007/BF02456607
  45. Kuroda, A., Murphy, H., Cashel, M., and Kornberg, A. 1997. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J. Biol. Chem. 272, 21240-21243. https://doi.org/10.1074/jbc.272.34.21240
  46. Lamarche, M.G. and Harel, J. 2010. Membrane homeostasis requires intact pst in extraintestinal pathogenic Escherichia coli. Curr. Microbiol. 60, 356-359. https://doi.org/10.1007/s00284-009-9549-x
  47. Lamarche, M.G., Kim, S.H., Crepin, S., Mourez, M., Bertrand, N., Bishop, R.E., Dubreuil, J.D., and Harel, J. 2008a. Modulation of hexa-acyl pyrophosphate lipid A population under Escherichia coli phosphate (Pho) regulon activation. J. Bacteriol. 190, 5256-5264. https://doi.org/10.1128/JB.01536-07
  48. Lamarche, M.G., Wanner, B.L., Crepin, S., and Harel, J. 2008b. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461-473. https://doi.org/10.1111/j.1574-6976.2008.00101.x
  49. Lau, W.T., Howson, R.W., Malkus, P., Schekman, R., and O'Shea, E.K. 2000. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc. Natl. Acad. Sci. USA 97, 1107-1112. https://doi.org/10.1073/pnas.97.3.1107
  50. Lemieux, M.J., Huang, Y., and Wang, D.N. 2004. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res. Microbiol. 155, 623-629. https://doi.org/10.1016/j.resmic.2004.05.016
  51. Li, Y. and Zhang, Y. 2007. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother. 51, 2092-2099. https://doi.org/10.1128/AAC.00052-07
  52. Luz, D.E., Nepomuceno, R.S., Spira, B., and Ferreira, R.C. 2012. The Pst system of Streptococcus mutans is important for phosphate transport and adhesion to abiotic surfaces. Mol. Oral Microbiol. 27, 172-181. https://doi.org/10.1111/j.2041-1014.2012.00641.x
  53. Merkel, T.J., Nelson, D.M., Brauer, C.L., and Kadner, R.J. 1992. Promoter elements required for positive control of transcription of the Escherichia coli uhpT gene. J. Bacteriol. 174, 2763-2770. https://doi.org/10.1128/jb.174.9.2763-2770.1992
  54. Metcalf, W.W. and Wanner, B.L. 1991. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi. J. Bacteriol. 173, 587- 600. https://doi.org/10.1128/jb.173.2.587-600.1991
  55. Moberly, J.G., Staven, A., Sani, R.K., and Peyton, B.M. 2010. Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. Environ. Sci. Technol. 44, 7302-7308. https://doi.org/10.1021/es100117f
  56. Monds, R.D., Silby, M.W., and Mahanty, H.K. 2001. Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Mol. Microbiol. 42, 415-426. https://doi.org/10.1046/j.1365-2958.2001.02641.x
  57. Moraleda-Munoz, A., Carrero-Lerida, J., Extremera, A.L., Arias, J.M., and Munoz-Dorado, J. 2001. Glycerol 3-phosphate inhibits swarming and aggregation of Myxococcus xanthus. J. Bacteriol. 183, 6135-6139. https://doi.org/10.1128/JB.183.20.6135-6139.2001
  58. Morohoshi, T., Maruo, T., Shirai, Y., Kato, J., Ikeda, T., Takiguchi, N., Ohtake, H., and Kuroda, A. 2002. Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 68, 4107-4110. https://doi.org/10.1128/AEM.68.8.4107-4110.2002
  59. Motomura, K., Hirota, R., Ohnaka, N., Okada, M., Ikeda, T., Morohoshi, T., Ohtake, H., and Kuroda, A. 2011. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: a hypothetical role of YjbB in phosphate export and polyphosphate accumulation. FEMS Microbiol. Lett. 320, 25-32. https://doi.org/10.1111/j.1574-6968.2011.02285.x
  60. Muda, M., Rao, N.N., and Torriani, A. 1992. Role of PhoU in phosphate transport and alkaline phosphatase regulation. J. Bacteriol. 174, 8057 -8064. https://doi.org/10.1128/jb.174.24.8057-8064.1992
  61. Mudrak, B. and Tamayo, R. 2012. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect. Immun. 80, 1794-1802. https://doi.org/10.1128/IAI.06277-11
  62. Nezbedova, S., Bezouskova, S., Kofronova, O., Benada, O., Rehulka, P., Rehulkova, H., Goldova, J., Janecek, J., and Weiser, J. 2011. The use of glass beads cultivation system to study the global effect of the ppk gene inactivation in Streptomyces lividans. Folia Microbiol. (Praha) 56, 519-525. https://doi.org/10.1007/s12223-011-0076-3
  63. O'May, G.A., Jacobsen, S.M., Longwell, M., Stoodley, P., Mobley, H.L., and Shirtliff, M.E. 2009. The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology 155, 1523-1535. https://doi.org/10.1099/mic.0.026500-0
  64. Oganesyan, V., Oganesyan, N., Adams, P.D., Jancarik, J., Yokota, H.A., Kim, R., and Kim, S.H. 2005. Crystal structure of the "PhoU-like" phosphate uptake regulator from Aquifex aeolicus. J. Bacteriol. 187, 4238-4244. https://doi.org/10.1128/JB.187.12.4238-4244.2005
  65. Ogawa, N., Tzeng, C.M., Fraley, C.D., and Kornberg, A. 2000. Inorganic polyphosphate in Vibrio cholerae: genetic, biochemical, and physiologic features. J. Bacteriol. 182, 6687-6693. https://doi.org/10.1128/JB.182.23.6687-6693.2000
  66. Ostrowski, M., Mazard, S., Tetu, S.G., Phillippy, K., Johnson, A., Palenik, B., Paulsen, I.T., and Scanlan, D.J. 2010. PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus. ISME J. 4, 908-921. https://doi.org/10.1038/ismej.2010.24
  67. Panhorst, M., Sorger-Herrmann, U., and Wendisch, V.F. 2011. The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J. Biotechnol. 154, 149-155. https://doi.org/10.1016/j.jbiotec.2010.07.015
  68. Park, J.Y. 2010. Phosphate deficiency stress response mediated by Pho regulon in Bacillus subtilis. Kor. J. Microbiol. 46, 113-121.
  69. Pongprayoon, P., Beckstein, O., Wee, C.L., and Sansom, M.S. 2009. Simulations of anion transport through OprP reveal the molecular basis for high affinity and selectivity for phosphate. Proc. Natl. Acad. Sci. USA 106, 21614-21618. https://doi.org/10.1073/pnas.0907315106
  70. Pratt, J.T., Ismail, A.M., and Camilli, A. 2010. PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol. Microbiol. 77, 1595-1605. https://doi.org/10.1111/j.1365-2958.2010.07310.x
  71. Pratt, J.T., McDonough, E., and Camilli, A. 2009. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J. Bacteriol. 191, 6632-6642. https://doi.org/10.1128/JB.00708-09
  72. Price-Carter, M., Fazzio, T.G., Vallbona, E.I., and Roth, J.R. 2005. Polyphosphate kinase protects Salmonella enterica from weak organic acid stress. J. Bacteriol. 187, 3088-3099. https://doi.org/10.1128/JB.187.9.3088-3099.2005
  73. Rao, N.N., Gomez-Garcia, M.R., and Kornberg, A. 2009. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem. 78, 605-647. https://doi.org/10.1146/annurev.biochem.77.083007.093039
  74. Rao, N.N. and Kornberg, A. 1999. Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog. Mol. Subcell. Biol. 23, 183-195. https://doi.org/10.1007/978-3-642-58444-2_9
  75. Rao, N.N., Liu, S., and Kornberg, A. 1998. Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. J. Bacteriol. 180, 2186-2193.
  76. Reid, A.N., Pandey, R., Palyada, K., Whitworth, L., Doukhanine, E., and Stintzi, A. 2008. Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling and genome-wide mutagenesis. Appl. Environ. Microbiol. 74, 1598-1612. https://doi.org/10.1128/AEM.01508-07
  77. Richards, G.R. and Vanderpool, C.K. 2012. Induction of the Pho regulon suppresses the growth defect of an Escherichia coli sgrS mutant, connecting phosphate metabolism to the glucose-phosphate stress response. J. Bacteriol. 194, 2520-2530. https://doi.org/10.1128/JB.00009-12
  78. Rifat, D., Bishai, W.R., and Karakousis, P.C. 2009. Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J. Infect. Dis. 200, 1126-1135. https://doi.org/10.1086/605700
  79. Rodriguez-Garcia, A., Barreiro, C., Santos-Beneit, F., Sola-Landa, A., and Martin, J.F. 2007. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant. Proteomics 7, 2410-2429. https://doi.org/10.1002/pmic.200600883
  80. Rogge, M.L. and Thune, R.L. 2011. Regulation of the Edwardsiella ictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl. Environ. Microbiol. 77, 4293-4302. https://doi.org/10.1128/AEM.00195-11
  81. Ruiz, N. and Silhavy, T.J. 2003. Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J. Bacteriol. 185, 5984-5992. https://doi.org/10.1128/JB.185.20.5984-5992.2003
  82. Runyen-Janecky, L.J., Boyle, A.M., Kizzee, A., Liefer, L., and Payne, S.M. 2005. Role of the Pst system in plaque formation by the intracellular pathogen Shigella flexneri. Infect. Immun. 73, 1404-1410. https://doi.org/10.1128/IAI.73.3.1404-1410.2005
  83. Scanlan, D.J., Mann, N.H., and Carr, N.G. 1993. The response of the picoplanktonic marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Mol. Microbiol. 10, 181-191. https://doi.org/10.1111/j.1365-2958.1993.tb00914.x
  84. Schurdell, M.S., Woodbury, G.M., and McCleary, W.R. 2007. Genetic evidence suggests that the intergenic region between pstA and pstB plays a role in the regulation of rpoS translation during phosphate limitation. J. Bacteriol. 189, 1150-1153. https://doi.org/10.1128/JB.01482-06
  85. Shi, X., Rao, N.N., and Kornberg, A. 2004. Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Proc. Natl. Acad. Sci. USA 101, 17061-17065. https://doi.org/10.1073/pnas.0407787101
  86. Slater, H., Crow, M., Everson, L., and Salmond, G.P. 2003. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol. Microbiol. 47, 303-320.
  87. Soualhine, H., Brochu, V., Menard, F., Papadopoulou, B., Weiss, K., Bergeron, M.G., Legare, D., Drummelsmith, J., and Ouellette, M. 2005. A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Mol. Microbiol. 58, 1430-1440. https://doi.org/10.1111/j.1365-2958.2005.04914.x
  88. Steed, P.M. and Wanner, B.L. 1993. Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCABphoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J. Bacteriol. 175, 6797-6809. https://doi.org/10.1128/jb.175.21.6797-6809.1993
  89. Sultan, S.Z., Silva, A.J., and Benitez, J.A. 2010. The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol. Lett. 302, 22-31. https://doi.org/10.1111/j.1574-6968.2009.01837.x
  90. Sureka, K., Sanyal, S., Basu, J., and Kundu, M. 2009. Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria. Mol. Microbiol. 74, 1187-1197. https://doi.org/10.1111/j.1365-2958.2009.06925.x
  91. Surin, B.P., Jans, D.A., Fimmel, A.L., Shaw, D.C., Cox, G.B., and Rosenberg, H. 1984. Structural gene for the phosphate-repressible phosphate-binding protein of Escherichia coli has its own promoter: complete nucleotide sequence of the phoS gene. J. Bacteriol. 157, 772-778.
  92. Surin, B.P., Rosenberg, H., and Cox, G.B. 1985. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J. Bacteriol. 161, 189-198.
  93. Tunpiboonsak, S., Mongkolrob, R., Kitudomsub, K., Thanwatanaying, P., Kiettipirodom, W., Tungboontina, Y., and Tungpradabkul, S. 2010. Role of a Burkholderia pseudomallei polyphosphate kinase in an oxidative stress response, motilities, and biofilm formation. J. Microbiol. 48, 63-70. https://doi.org/10.1007/s12275-010-9138-5
  94. van Veen, H.W. 1997. Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 72, 299-315. https://doi.org/10.1023/A:1000530927928
  95. van Veen, H.W., Abee, T., Kortstee, G.J., Konings, W.N., and Zehnder, A.J. 1994. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 33, 1766-1770. https://doi.org/10.1021/bi00173a020
  96. VanBogelen, R.A., Olson, E.R., Wanner, B.L., and Neidhardt, F.C. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 178, 4344-4366. https://doi.org/10.1128/jb.178.15.4344-4366.1996
  97. Wanner, B.L. 1996. Phosphorus assimilation and control of the phosphate regulon, pp. 1357-1381. In Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Jr, Magasanik, (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology Press, Washington, DC, USA.
  98. Webb, D.C., Rosenberg, H., and Cox, G.B. 1992. Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. J. Biol. Chem. 267, 24661-24668.
  99. Wu, H.J., Seib, K.L., Srikhanta, Y.N., Edwards, J., Kidd, S.P., Maguire, T.L., Hamilton, A., Pan, K.T., Hsiao, H.H., Yao, C.W., and et al. 2010. Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae. J. Proteomics 73, 899-916. https://doi.org/10.1016/j.jprot.2009.12.001
  100. Yuan, Z.C., Zaheer, R., and Finan, T.M. 2005. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol. Microbiol. 58, 877-894. https://doi.org/10.1111/j.1365-2958.2005.04874.x
  101. Yuan, Z.C., Zaheer, R., Morton, R., and Finan, T.M. 2006. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res. 34, 2686-2697. https://doi.org/10.1093/nar/gkl365

Cited by

  1. ChondroT 구성 약재의 항응고 효과에 관한 연구 vol.28, pp.2, 2018, https://doi.org/10.18325/jkmr.2018.28.2.47