Browse > Article

Phosphate Deficiency Stress Response Mediated by Pho Regulon in Bacillus subtilis  

Park, Jae-Yong (Department of Food Science and Nutrition, Catholic University of Daegue)
Publication Information
Korean Journal of Microbiology / v.46, no.2, 2010 , pp. 113-121 More about this Journal
Abstract
Bacillus subtilis PhoP-PhoR two-component system (TCS) senses phosphate deficiency conditions, and then controls expression of the Pho regulon to prolong survival. The sensor histidine kinase, PhoR, is autophosphorylated and transfers the phosphate to the response regulator, PhoP. Phosphorylated PhoP (PhoP~P) binds to repeated 6-bp consensus PhoP binding sequences of Pho regulon promoters and activates or represses gene expression. Pho signal transduction systems are part of interconnected signal transduction network involving at least three TCSs (PhoP-PhoR, ResD-ResE TCS, SpoOA phosphorelay), a global carbon metabolism regulator (CcpA), and transition state regulators (AbrB, ScoC). In addition, PhoP-PhoR TCS is cross related with YycF-YycG TCS by cross-regulation. While indescribable progress has been made in understanding phosphate deficiency stress response through refined expression of the Pho regulon in the recent past years, many important questions still remain. Solving these questions may provide important information for application study using B. subtilis.
Keywords
B. subtilis; PhoPR two component system; Pho regulon; phosphate deficiency; signal transduction network;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Jongbloed, J.D.H., U. Martin, H. Antelmann, M. Hecker, H. Tjalsma, G. Venema, S. Bron, J.M.v. Dijl, and J. Müller. 2000. TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J. Biol. Chem. 275, 41350-41357.   DOI
2 Kaushal, B., S. Paul, and F.M. Hulett. 2010. Direct regulation of Bacillus subtilis phoPR transcription by transition state regulator ScoC. J. Bacteriol. doi:10.1128/JB.00089-10.
3 Kim, S.K., M.R. WilmesRiesenberg, and B.L. Wanner. 1996. Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol. Microbiol. 22, 135-147.   DOI   ScienceOn
4 Lamarche, M.G., B.L. Wanner, S. Crepin, and J. Harel. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461-473.   DOI   ScienceOn
5 Hulett, F.M. 2002. The Pho Regulon, pp. 193-201. In A.L. Sonenshein, J.A. Hoch, and R. Losick (eds.), Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, D.C., USA.
6 Eder, S., L. Shi, K. Jensen, K. Yamane, and F.M. Hulett. 1996. A Bacillus subtilis secreted phosphodiesterase alkaline phosphatase is the product of a Pho regulon gene, phoD. Microbiology 142, 2041-2047.   DOI   ScienceOn
7 Bisicchia, P., E. Lioliou, D. Noone, L.I. Salzberg, E. Botella, S. Hübner, and K.M. Devine. 2010. Peptidoglycan metabolism is controlled by the WalRK (YycFG) and PhoPR two-component systems in phosphate-limited Bacillus subtilis cell. Mol. Microbiol. 75, 972-989.   DOI   ScienceOn
8 Abdel-Fattah, W.R., Y.H. Chen, A. Eldakak, and F.M. Hulett. 2005. Bacillus subtilis phosphorylated PhoP: Direct activation of the $E\sigma^{A}$- and repression of the $E\sigma^{E}$ -responsive phoB-PS+V promoters during Pho response. J. Bacteriol. 187, 5166-5178.   DOI   ScienceOn
9 Zhang, X.H. and F.M. Hulett. 2000. ResD signal transduction regulator of aerobic respiration in Bacillus subtilis: ctaA promoter regulation. Mol. Microbiol. 37, 1208-1219.   DOI   ScienceOn
10 Zhulin, I.B. and B.L. Taylor. 1997. PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22, 331-333.   DOI
11 Sun, G.F., E. Sharkova, R. Chesnut, S. Birkey, M.F. Duggan, A. Sorokin, P. Pujic, S.D. Ehrlich, and F.M. Hulett. 1996. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J. Bacteriol. 178, 1374-1385.   DOI
12 Takemaru, K., M. Mizuno, and Y. Kobayashi. 1996. A Bacillus subtilis gene cluster similar to the Escherichia coli phosphatespecific transport (pst) operon. Microbioloby 142, 2017-2020.
13 Wanner, B.L. 1992. Is cross regulation by phosphorylation of two-component response regulator protein important in bacteria? J. Bacteriol. 174, 2053-2058.   DOI
14 West, A.H. and A.M. Stock. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26, 369-376.   DOI
15 Yuan, Z.C., R. Zaheer, R. Morton, and T.M. Finan. 2006. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res. 34, 2686-2697.   DOI   ScienceOn
16 Strauch, M., V. Webb, G. Spiegelman, and J.A. Hoch. 1990. The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl. Acad. Sci. USA 87, 1801-1805.   DOI   ScienceOn
17 Sun, G.F., S.M. Birkey, and F.M. Hulett. 1996. Three twocomponent signal-transduction systems interact for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19, 941-948.   DOI   ScienceOn
18 Rodriuez-Garcia, A., A. Sola-Landa, K. Apel, F. Santos-Beneit, and J.F. Martín. 2009. Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucleic Acids Res. 37, 3230-3242.   DOI   ScienceOn
19 Schau, M., A. Eldakak, and F.M. Hulett. 2004. Terminal oxidases are essential to bypass the requirement for ResD for full Pho induction in Bacillus subtilis. J. Bacteriol. 186, 8424-8432.   DOI   ScienceOn
20 Qi, Y. and F.M. Hulett. 1998. Role of PhoP similar to P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis. J. Bacteriol. 180, 4007-4010.
21 Qi, Y. and F.M. Hulett. 1998. PhoP-P and RNA polymerases $\sigma^{A}$ holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 28, 1187-1197.   DOI   ScienceOn
22 Puri-Taneja, A., S. Paul, Y.H. Chen, and F.M. Hulett. 2006. CcpA causes repression of the phoPR promoter through a novel transcription start site, $P_{A6}$. J. Bacteriol. 188, 1266-1278.   DOI   ScienceOn
23 Pragai, Z. and C.R. Harwood. 2002. Regulatory interactions between the Pho and $\sigma^{B}$-dependent general stress regulons of Bacillus subtilis. Microbiology 148, 1593-1602.   DOI
24 Paul, S., S. Birkey, W. Liu, and F.M. Hulett. 2004. Autoinduction of Bacillus subtilis phoPR operon transcription results from enhanced transcription from $E\sigma^{A}$ - and $E\sigma^{E}$ -responsive promoters by phosphorylated PhoP. J. Bacteriol. 186, 4262-4275.   DOI   ScienceOn
25 Nakano, M.M. and F.M. Hulett. 1997. Adaptation of Bacillus subtilis to oxygen limitation. FEMS Microbiol. Lett. 157, 1-7.   DOI   ScienceOn
26 Nakano, M.M., Y. Zhu, K. Haga, H. Yoshikawa, A.L. Sonenshein, and P. Zuber. 1999. A mutation in the 3-phopsphoglycerate kinase gene allows anaerobic growth of Bacillus subtilis in the absence of ResE kinase. J. Bacteriol. 181, 7087-7097.
27 Hulett, F.M., E.E. Kim, C. Bookstein, N.V. Kapp, C.W. Edwards, and H.W. Wyckoff. 1991. Bacillus subtilis alkaline phosphatase III and phosphatase IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J. Biol. Chem. 266, 1077-1084.
28 Hulett, F.M., J.W. Lee, L. Shi, G.F. Sun, R. Chesnut, E. Sharkova, M.F. Duggan, and N. Kapp. 1994. Sequential action of two-component genetic switches regulates the Pho regulon in Bacillus subtilis. J. Bacteriol. 176, 1348-1358.   DOI
29 Jensen, K.K., E. Sharkova, M.F. Duggan, Y. Qi, A. Koide, J.A. Hoch, and F.M. Hulett. 1993. Bacillus subtilis transcription regulator, Spo0A, decreases alkaline phosphatase levels induced by phosphate starvation. J. Bacteriol. 175, 3749-3756.   DOI
30 Eldakak, A. and F.M. Hulett. 2007. Cys303 in the histidine kinase PhoR is crucial for the phosphotransfer reaction in the PhoPR two-component system in Bacillus subtilis. J. Bacteriol. 189, 410-421.   DOI   ScienceOn
31 Choi, S.K. and M.H. Saier. 2006. Mechanism of CcpA-mediated glucose repression of the resABCDE Operon of Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 11, 104-110.   DOI   ScienceOn
32 Chen, Y.H., C. Birck, J.P. Samama, and F.M. Hulett. 2003. Residue R113 is essential for PhoP dimerization and function: a residue buried in the asymmetric PhoP dimer interface determined in the PhoPN three-dimensional crystal structure. J. Bacteriol. 185, 262-273.   DOI   ScienceOn
33 Choi, S.K. and M.H. Saier. 2005. Regulation of pho regulon gene expression by the carbon control protein A, CcpA, in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 10, 40-50.   DOI   ScienceOn
34 Barbieri, C.M. and A.M. Stock. 2008. Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents. Anal. Biochem. 376, 73-82.   DOI   ScienceOn
35 Birck, C., Y.H. Chen, F.M. Hulett, and J.P. Samama. 2003. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface. J. Bacteriol. 185, 254-261.   DOI   ScienceOn
36 Birkey, S.M., W. Liu, X.H. Zhang, M.F. Duggan, and F.M. Hulett. 1998. Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD. Mol. Microbiol. 30, 943-953.   DOI   ScienceOn
37 Allenby, N.E.E., N. O'Connor, Z. Pragai, A.C. Ward, A. Wipat, and C.R. Harwood. 2005. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J. Bacteriol. 187, 8063-8080.   DOI   ScienceOn
38 Shi, L., W. Liu, and F.M. Hulett. 1999. Decay of activated Bacillus subtilis Pho response regulator, PhoP-P, involves the PhoR-P intermediate. Biochemistry 38, 10119-10125.   DOI   ScienceOn
39 Smith, M.W. and J.W. Payne. 1992. Expression of periplasmic binding proteins for peptide transport is subject to negative regulation by phosphate limitation in Escherichia coli. FEMS Microbiol. Lett. 79, 183-190.
40 Shi, L. and F.M. Hulett. 1999. The cytoplasmic kinase domain of PhoR is sufficient for the low phosphate-inducible expression of Pho regulon genes in Bacillus subtilis. Mol. Microbiol. 31, 211-222.   DOI   ScienceOn
41 Robichon, D., M. Arnaud, R. Gardan, Z. Pragai, M. O'Reilly, G. Rapoport, and M. Debarbouille. 2000. Expression of a new operon from Bacillus subtilis, ykzB-ykoL, under the control of the TnrA and PhoP-PhoR global regulator. J. Bacteriol. 182, 1226-1231.   DOI   ScienceOn
42 Qi, Y., Y. Kobayashi, and F.M. Hulett. 1997. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the Pho regulon. J. Bacteriol. 179, 2534-2539.   DOI
43 Puri-Taneja, A., M. Schau, Y.H. Chen, and F.M. Hulett. 2007. Regulators of the Bacillus subtilis cydABCD operon: Identification of a negative regulator, CcpA, and a positive regulator, ResD. J. Bacteriol. 189, 3348-3358.   DOI   ScienceOn
44 Pragai, Z., N.E. Allenby, N. O'Connor, S. Dubrac, G. Rapoport, T. Msadek, and C.R. Harwood. 2004. Transcriptional regulation of the phoPR operon in Bacillus subtilis. J. Bacteriol. 186, 1182-1190.   DOI   ScienceOn
45 Nakano, M.M., Y. Zhu, M. LaCelle, X.H. Zhang, and F.M. Hulett. 2000. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis. Mol. Microbiol. 37, 1198-1207.   DOI   ScienceOn
46 Liu, W. and F.M. Hulett. 1998. Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology 144, 1443-1450.   DOI   ScienceOn
47 Liu, X. and H.W. Taber. 1998. Catabolite regulation of the Bacillus subtilis ctaBCDEF gene cluster. J. Bacteriol. 180, 6154-6163.
48 Martinez-Hackert, E. and A.M. Stock. 1997. The DNA-binding domain of OmpR: crystal structure of a winged helix transcription factor. Structure 5, 109-124.   DOI   ScienceOn
49 Ogura, M., H. Yamaguchi, K.I. Yoshida, Y. Fujita, and T. Tanaka. 2001. DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B.subtilis two-component regulatory systems Nucleic Acids Res. 29, 3804-3813.   DOI
50 McCleary, W.R. and J.B. Stock. 1994. Acetyl phosphate and the activation of 2-component response regulators. J. Biol. Chem. 269, 31567-31572.
51 Laub, M.T. and M. Goulian. 2007. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41, 121-145.   DOI   ScienceOn
52 Le Brun, N.E., J. Bengtsson, and L. Hederstedt. 2000. Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol. 36, 638-650.
53 Liu, W., S. Eder, and F.M. Hulett. 1998. Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J. Bacteriol. 180, 753-758.
54 Liu, W. and F.M. Hulett. 1997. Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter. J. Bacteriol. 179, 6302-6310.   DOI
55 Fabret, C., V.A. Feher, and J.A. Hoch. 1999. Two-component signal transduction in Bacillus subtilis: How one organism sees its world. J. Bacteriol. 181, 1975-1983.
56 Hoch, J.A. 2000. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165-170.   DOI   ScienceOn
57 Howell, A., S. Dubrac, D. Noone, K.I. Varughese, and K. Devin. 2006. Interaction between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the noncognate YycF response regulator upon phosphate limitation. Mol. Microbiol. 59, 1199-1215.   DOI   ScienceOn
58 Eder, S., W. Liu, and F.M. Hulett. 1999. Mutational analysis of the phoD promoter in Bacillus subtilis: Implications for PhoP binding and promoter activation of Pho regulon promoters. J. Bacteriol. 181, 2017-2025.
59 Antelmann, H., C. Scharf, and M. Hecker. 2000. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics approach and transcriptional analysis. J. Bacteriol. 182, 4478-4490.   DOI   ScienceOn
60 Baek, J.H. and S.Y. Lee. 2006. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol. Lett. 264, 104-109.   DOI   ScienceOn
61 Abdel-Fattah, W.R. 2007. Bacillus subtilis PhoP-P direct roles in Pho and Res regulation in response to Pi-stress. PhD Thiesis, University of Illinois, Chicago, USA.