Browse > Article
http://dx.doi.org/10.7845/kjm.2012.48.2.057

Bacterial Phosphate Homeostasis: Role of Phosphate Transporters  

Park, Yoon-Mee (Department of Microbiology and Immunology, Chosun University School of Dentistry)
Bang, Iel-Soo (Department of Microbiology and Immunology, Chosun University School of Dentistry)
Publication Information
Korean Journal of Microbiology / v.48, no.2, 2012 , pp. 57-65 More about this Journal
Abstract
Phosphorous is an essential element for the synthesis of various biomolecules including phospholipids, carbohydrates and nucleic acids. Bacterial cells can uptake it as forms of phosphate and phosphate-containing nutrients from extracellular environments, and reserve extra phosphate to polyphosphate inside the cell. Among five phosphate transport systems, Pst plays central roles in phosphate transport, and its expression is coordinated by the regulation of PhoB-PhoR two component signal transduction system in response to extracellular levels of phosphate. Genomic studies on the response regulator PhoB reveal many genes independent of phosphate metabolism. Based on recent findings on phenotypes of bacteria lacking proper function of each phosphate transport system, this review discusses roles of phosphate transporters in maintaining optimum intracellular phosphate levels, and presents diverse phenotypes of phosphate transporters related with other environmental signals as well as phosphate, then finally points out functional redundancy among phosphate transport systems or their regulators, which emphasize importance of phosphate homeostasis in governing metabolism, adaptation, and virulence of bacteria.
Keywords
PhoB; phosphate homeostasis; phosphate transporter; phosphorous; Pst system;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Geiger, O., Rohrs, V., Weissenmayer, B., Finan, T.M., and Thomas- Oates, J.E. 1999. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl- N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol. Microbiol. 32, 63-73.   DOI   ScienceOn
2 Gristwood, T., Fineran, P.C., Everson, L., Williamson, N.R., and Salmond, G.P. 2009. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol. 9, 112.   DOI
3 Hoffer, S.M., van Uden, N., and Tommassen, J. 2001. Expression of the pho regulon interferes with induction of the uhpT gene in Escherichia coli K-12. Arch. Microbiol. 176, 370-376.   DOI   ScienceOn
4 Hsieh, Y.J. and Wanner, B.L. 2010. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198-203.   DOI   ScienceOn
5 Huang, Y., Lemieux, M.J., Song, J., Auer, M., and Wang, D.N. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616-620.   DOI
6 Hulett, F.M., Lee, J., Shi, L., Sun, G., Chesnut, R., Sharkova, E., Duggan, M.F., and Kapp, N. 1994. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. J. Bacteriol. 176, 1348-1358.   DOI
7 Jackson, R.J., Binet, M.R., Lee, L.J., Ma, R., Graham, A.I., McLeod, C.W., and Poole, R.K. 2008. Expression of the PitA phosphate/metal transporter of Escherichia coli is responsive to zinc and inorganic phosphate levels. FEMS Microbiol. Lett. 289, 219-224.   DOI   ScienceOn
8 Jacobsen, S.M., Lane, M.C., Harro, J.M., Shirtliff, M.E., and Mobley, H.L. 2008. The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection. FEMS Immunol. Med. Microbiol. 52, 180-193.   DOI
9 Jahid, I.K., Silva, A.J., and Benitez, J.A. 2006. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl. Environ. Microbiol. 72, 7043-7049.   DOI   ScienceOn
10 Kato, J., Yamamoto, T., Yamada, K., and Ohtake, H. 1993. Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppk) of Klebsiella aerogenes. Gene 137, 237-242.   DOI   ScienceOn
11 Kim, H.J., Yang, K.Y., Cho, B.H., Kim, K.Y., Lee, M.C., Kim, Y.H., Anderson, A.J., and Kim, Y.C. 2007. Transcript accumulation from the rpoS gene encoding a stationary-phase sigma factor in Pseudomonas chlororaphis strain O6 is regulated by the polyphosphate kinase gene. Curr. Microbiol. 54, 219-223.   DOI   ScienceOn
12 Kim, S.K., Makino, K., Amemura, M., Nakata, A., and Shinagawa, H. 1995. Mutational analysis of the role of the first helix of region 4.2 of the sigma 70 subunit of Escherichia coli RNA polymerase in transcriptional activation by activator protein PhoB. Mol. Gen. Genet. 248, 1-8.   DOI   ScienceOn
13 Kuroda, A., Murphy, H., Cashel, M., and Kornberg, A. 1997. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J. Biol. Chem. 272, 21240-21243.   DOI
14 Lamarche, M.G. and Harel, J. 2010. Membrane homeostasis requires intact pst in extraintestinal pathogenic Escherichia coli. Curr. Microbiol. 60, 356-359.   DOI   ScienceOn
15 Lamarche, M.G., Kim, S.H., Crepin, S., Mourez, M., Bertrand, N., Bishop, R.E., Dubreuil, J.D., and Harel, J. 2008a. Modulation of hexa-acyl pyrophosphate lipid A population under Escherichia coli phosphate (Pho) regulon activation. J. Bacteriol. 190, 5256-5264.   DOI   ScienceOn
16 Lamarche, M.G., Wanner, B.L., Crepin, S., and Harel, J. 2008b. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461-473.   DOI   ScienceOn
17 Luz, D.E., Nepomuceno, R.S., Spira, B., and Ferreira, R.C. 2012. The Pst system of Streptococcus mutans is important for phosphate transport and adhesion to abiotic surfaces. Mol. Oral Microbiol. 27, 172-181.   DOI   ScienceOn
18 Lau, W.T., Howson, R.W., Malkus, P., Schekman, R., and O'Shea, E.K. 2000. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc. Natl. Acad. Sci. USA 97, 1107-1112.   DOI   ScienceOn
19 Lemieux, M.J., Huang, Y., and Wang, D.N. 2004. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res. Microbiol. 155, 623-629.   DOI   ScienceOn
20 Li, Y. and Zhang, Y. 2007. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother. 51, 2092-2099.   DOI   ScienceOn
21 Merkel, T.J., Nelson, D.M., Brauer, C.L., and Kadner, R.J. 1992. Promoter elements required for positive control of transcription of the Escherichia coli uhpT gene. J. Bacteriol. 174, 2763-2770.   DOI
22 Metcalf, W.W. and Wanner, B.L. 1991. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi. J. Bacteriol. 173, 587- 600.   DOI
23 Moberly, J.G., Staven, A., Sani, R.K., and Peyton, B.M. 2010. Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. Environ. Sci. Technol. 44, 7302-7308.   DOI   ScienceOn
24 Monds, R.D., Silby, M.W., and Mahanty, H.K. 2001. Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Mol. Microbiol. 42, 415-426.   DOI   ScienceOn
25 Muda, M., Rao, N.N., and Torriani, A. 1992. Role of PhoU in phosphate transport and alkaline phosphatase regulation. J. Bacteriol. 174, 8057 -8064.   DOI
26 Moraleda-Munoz, A., Carrero-Lerida, J., Extremera, A.L., Arias, J.M., and Munoz-Dorado, J. 2001. Glycerol 3-phosphate inhibits swarming and aggregation of Myxococcus xanthus. J. Bacteriol. 183, 6135-6139.   DOI   ScienceOn
27 Morohoshi, T., Maruo, T., Shirai, Y., Kato, J., Ikeda, T., Takiguchi, N., Ohtake, H., and Kuroda, A. 2002. Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 68, 4107-4110.   DOI   ScienceOn
28 Motomura, K., Hirota, R., Ohnaka, N., Okada, M., Ikeda, T., Morohoshi, T., Ohtake, H., and Kuroda, A. 2011. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: a hypothetical role of YjbB in phosphate export and polyphosphate accumulation. FEMS Microbiol. Lett. 320, 25-32.   DOI   ScienceOn
29 Mudrak, B. and Tamayo, R. 2012. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect. Immun. 80, 1794-1802.   DOI   ScienceOn
30 Nezbedova, S., Bezouskova, S., Kofronova, O., Benada, O., Rehulka, P., Rehulkova, H., Goldova, J., Janecek, J., and Weiser, J. 2011. The use of glass beads cultivation system to study the global effect of the ppk gene inactivation in Streptomyces lividans. Folia Microbiol. (Praha) 56, 519-525.   DOI   ScienceOn
31 O'May, G.A., Jacobsen, S.M., Longwell, M., Stoodley, P., Mobley, H.L., and Shirtliff, M.E. 2009. The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology 155, 1523-1535.   DOI   ScienceOn
32 Oganesyan, V., Oganesyan, N., Adams, P.D., Jancarik, J., Yokota, H.A., Kim, R., and Kim, S.H. 2005. Crystal structure of the "PhoU-like" phosphate uptake regulator from Aquifex aeolicus. J. Bacteriol. 187, 4238-4244.   DOI   ScienceOn
33 Park, J.Y. 2010. Phosphate deficiency stress response mediated by Pho regulon in Bacillus subtilis. Kor. J. Microbiol. 46, 113-121.
34 Ogawa, N., Tzeng, C.M., Fraley, C.D., and Kornberg, A. 2000. Inorganic polyphosphate in Vibrio cholerae: genetic, biochemical, and physiologic features. J. Bacteriol. 182, 6687-6693.   DOI   ScienceOn
35 Ostrowski, M., Mazard, S., Tetu, S.G., Phillippy, K., Johnson, A., Palenik, B., Paulsen, I.T., and Scanlan, D.J. 2010. PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus. ISME J. 4, 908-921.   DOI   ScienceOn
36 Panhorst, M., Sorger-Herrmann, U., and Wendisch, V.F. 2011. The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J. Biotechnol. 154, 149-155.   DOI   ScienceOn
37 Pongprayoon, P., Beckstein, O., Wee, C.L., and Sansom, M.S. 2009. Simulations of anion transport through OprP reveal the molecular basis for high affinity and selectivity for phosphate. Proc. Natl. Acad. Sci. USA 106, 21614-21618.   DOI   ScienceOn
38 Pratt, J.T., Ismail, A.M., and Camilli, A. 2010. PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol. Microbiol. 77, 1595-1605.   DOI   ScienceOn
39 Pratt, J.T., McDonough, E., and Camilli, A. 2009. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J. Bacteriol. 191, 6632-6642.   DOI   ScienceOn
40 Price-Carter, M., Fazzio, T.G., Vallbona, E.I., and Roth, J.R. 2005. Polyphosphate kinase protects Salmonella enterica from weak organic acid stress. J. Bacteriol. 187, 3088-3099.   DOI   ScienceOn
41 Rao, N.N., Gomez-Garcia, M.R., and Kornberg, A. 2009. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem. 78, 605-647.   DOI   ScienceOn
42 Richards, G.R. and Vanderpool, C.K. 2012. Induction of the Pho regulon suppresses the growth defect of an Escherichia coli sgrS mutant, connecting phosphate metabolism to the glucose-phosphate stress response. J. Bacteriol. 194, 2520-2530.   DOI   ScienceOn
43 Rao, N.N. and Kornberg, A. 1999. Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog. Mol. Subcell. Biol. 23, 183-195.   DOI
44 Rao, N.N., Liu, S., and Kornberg, A. 1998. Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. J. Bacteriol. 180, 2186-2193.
45 Reid, A.N., Pandey, R., Palyada, K., Whitworth, L., Doukhanine, E., and Stintzi, A. 2008. Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling and genome-wide mutagenesis. Appl. Environ. Microbiol. 74, 1598-1612.   DOI   ScienceOn
46 Rifat, D., Bishai, W.R., and Karakousis, P.C. 2009. Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J. Infect. Dis. 200, 1126-1135.   DOI   ScienceOn
47 Rodriguez-Garcia, A., Barreiro, C., Santos-Beneit, F., Sola-Landa, A., and Martin, J.F. 2007. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant. Proteomics 7, 2410-2429.   DOI   ScienceOn
48 Rogge, M.L. and Thune, R.L. 2011. Regulation of the Edwardsiella ictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl. Environ. Microbiol. 77, 4293-4302.   DOI   ScienceOn
49 Ruiz, N. and Silhavy, T.J. 2003. Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J. Bacteriol. 185, 5984-5992.   DOI   ScienceOn
50 Runyen-Janecky, L.J., Boyle, A.M., Kizzee, A., Liefer, L., and Payne, S.M. 2005. Role of the Pst system in plaque formation by the intracellular pathogen Shigella flexneri. Infect. Immun. 73, 1404-1410.   DOI   ScienceOn
51 Scanlan, D.J., Mann, N.H., and Carr, N.G. 1993. The response of the picoplanktonic marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Mol. Microbiol. 10, 181-191.   DOI   ScienceOn
52 Schurdell, M.S., Woodbury, G.M., and McCleary, W.R. 2007. Genetic evidence suggests that the intergenic region between pstA and pstB plays a role in the regulation of rpoS translation during phosphate limitation. J. Bacteriol. 189, 1150-1153.   DOI   ScienceOn
53 Shi, X., Rao, N.N., and Kornberg, A. 2004. Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Proc. Natl. Acad. Sci. USA 101, 17061-17065.   DOI   ScienceOn
54 Slater, H., Crow, M., Everson, L., and Salmond, G.P. 2003. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol. Microbiol. 47, 303-320.
55 Soualhine, H., Brochu, V., Menard, F., Papadopoulou, B., Weiss, K., Bergeron, M.G., Legare, D., Drummelsmith, J., and Ouellette, M. 2005. A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Mol. Microbiol. 58, 1430-1440.   DOI   ScienceOn
56 Steed, P.M. and Wanner, B.L. 1993. Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCABphoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J. Bacteriol. 175, 6797-6809.   DOI
57 Sultan, S.Z., Silva, A.J., and Benitez, J.A. 2010. The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol. Lett. 302, 22-31.   DOI   ScienceOn
58 Surin, B.P., Rosenberg, H., and Cox, G.B. 1985. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J. Bacteriol. 161, 189-198.
59 Sureka, K., Sanyal, S., Basu, J., and Kundu, M. 2009. Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria. Mol. Microbiol. 74, 1187-1197.   DOI   ScienceOn
60 Surin, B.P., Jans, D.A., Fimmel, A.L., Shaw, D.C., Cox, G.B., and Rosenberg, H. 1984. Structural gene for the phosphate-repressible phosphate-binding protein of Escherichia coli has its own promoter: complete nucleotide sequence of the phoS gene. J. Bacteriol. 157, 772-778.
61 Tunpiboonsak, S., Mongkolrob, R., Kitudomsub, K., Thanwatanaying, P., Kiettipirodom, W., Tungboontina, Y., and Tungpradabkul, S. 2010. Role of a Burkholderia pseudomallei polyphosphate kinase in an oxidative stress response, motilities, and biofilm formation. J. Microbiol. 48, 63-70.   DOI
62 van Veen, H.W. 1997. Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 72, 299-315.   DOI   ScienceOn
63 van Veen, H.W., Abee, T., Kortstee, G.J., Konings, W.N., and Zehnder, A.J. 1994. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 33, 1766-1770.   DOI   ScienceOn
64 VanBogelen, R.A., Olson, E.R., Wanner, B.L., and Neidhardt, F.C. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 178, 4344-4366.   DOI
65 Wanner, B.L. 1996. Phosphorus assimilation and control of the phosphate regulon, pp. 1357-1381. In Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Jr, Magasanik, (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology Press, Washington, DC, USA.
66 Yuan, Z.C., Zaheer, R., Morton, R., and Finan, T.M. 2006. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res. 34, 2686-2697.   DOI   ScienceOn
67 Webb, D.C., Rosenberg, H., and Cox, G.B. 1992. Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. J. Biol. Chem. 267, 24661-24668.
68 Wu, H.J., Seib, K.L., Srikhanta, Y.N., Edwards, J., Kidd, S.P., Maguire, T.L., Hamilton, A., Pan, K.T., Hsiao, H.H., Yao, C.W., and et al. 2010. Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae. J. Proteomics 73, 899-916.   DOI   ScienceOn
69 Yuan, Z.C., Zaheer, R., and Finan, T.M. 2005. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol. Microbiol. 58, 877-894.   DOI   ScienceOn
70 Aguena, M., Yagil, E., and Spira, B. 2002. Transcriptional analysis of the pst operon of Escherichia coli. Mol. Genet. Genomics 268, 518-524.   DOI   ScienceOn
71 Auesukaree, C., Homma, T., Tochio, H., Shirakawa, M., Kaneko, Y., and Harashima, S. 2004. Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J. Biol. Chem. 279, 17289-17294.   DOI   ScienceOn
72 Ault-Riche, D., Fraley, C.D., Tzeng, C.M., and Kornberg, A. 1998. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180, 1841-1847.
73 Baek, J.H., Kang, Y.J., and Lee, S.Y. 2007. Transcript and protein level analyses of the interactions among PhoB, PhoR, PhoU and CreC in response to phosphate starvation in Escherichia coli. FEMS Microbiol. Lett. 277, 254-259.   DOI   ScienceOn
74 Baek, J.H. and Lee, S.Y. 2006. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol. Lett. 264, 104-109.   DOI   ScienceOn
75 Battesti, A., Majdalani, N., and Gottesman, S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65, 189-213.   DOI   ScienceOn
76 Bauer, K., Benz, R., Brass, J., and Boos, W. 1985. Salmonella typhimurium contains an anion-selective outer membrane porin induced by phosphate starvation. J. Bacteriol. 161, 813-816.
77 Beard, S.J., Hashim, R., Wu, G., Binet, M.R., Hughes, M.N., and Poole, R.K. 2000. Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. 184, 231-235.   DOI   ScienceOn
78 Borsetti, F., Toninello, A., and Zannoni, D. 2003. Tellurite uptake by cells of the facultative phototroph Rhodobacter capsulatus is a Delta pH-dependent process. FEBS Lett. 554, 315-318.   DOI   ScienceOn
79 Bhatt, K., Banerjee, S.K., and Chakraborti, P.K. 2000. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis. Eur. J. Biochem. 267, 4028- 4032.   DOI   ScienceOn
80 Birkey, S.M., Sun, G., Piggot, P.J., and Hulett, F.M. 1994. A pho regulon promoter induced under sporulation conditions. Gene 147, 95-100.   DOI   ScienceOn
81 Buckles, E.L., Wang, X., Lockatell, C.V., Johnson, D.E., and Donnenberg, M.S. 2006. PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152, 153-160.   DOI   ScienceOn
82 Budin-Verneuil, A., Pichereau, V., Auffray, Y., Ehrlich, D., and Maguin, E. 2007. Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363. Proteomics 7, 2038-2046.   DOI   ScienceOn
83 Burall, L.S., Harro, J.M., Li, X., Lockatell, C.V., Himpsl, S.D., Hebel, J.R., Johnson, D.E., and Mobley, H.L. 2004. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922-2938.   DOI   ScienceOn
84 Carmany, D.O., Hollingsworth, K., and McCleary, W.R. 2003. Genetic and biochemical studies of phosphatase activity of PhoR. J. Bacteriol. 185, 1112-1115.   DOI   ScienceOn
85 Castaneda-Garcia, A., Rodriguez-Rojas, A., Guelfo, J.R., and Blazquez, J. 2009. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J. Bacteriol. 191, 6968-6974.   DOI   ScienceOn
86 Chavez, F.P., Mauriaca, C., and Jerez, C.A. 2009. Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria. BMC Res. Notes 2, 50.   DOI
87 Cesselin, B., Ali, D., Gratadoux, J.J., Gaudu, P., Duwat, P., Gruss, A., and El Karoui, M. 2009. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis. Microbiology 155, 2274-2281.   DOI   ScienceOn
88 Chakraborti, P.K., Bhatt, K., Banerjee, S.K., and Misra, P. 1999. Role of an ABC importer in mycobacterial drug resistance. Biosci. Rep. 19, 293-300.   DOI   ScienceOn
89 Chan, F.Y. and Torriani, A. 1996. PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J. Bacteriol. 178, 3974-3977.   DOI
90 Cheng, C., Tennant, S.M., Azzopardi, K.I., Bennett-Wood, V., Hartland, E.L., Robins-Browne, R.M., and Tauschek, M. 2009. Contribution of the pst-phoU operon to cell adherence by atypical enteropathogenic Escherichia coli and virulence of Citrobacter rodentium. Infect. Immun. 77, 1936-1944.   DOI   ScienceOn
91 Crepin, S., Chekabab, S.M., Le Bihan, G., Bertrand, N., Dozois, C.M., and Harel, J. 2011. The Pho regulon and the pathogenesis of Escherichia coli. Vet. Microbiol. 153, 82-88.   DOI   ScienceOn
92 Critzer, F.J., D'Souza, D.H., Saxton, A.M., and Golden, D.A. 2010. Increased transcription of the phosphate-specific transport system of Escherichia coli O157:H7 after exposure to sodium benzoate. J. Food Prot. 73, 819-824.   DOI
93 De Groote, V.N., Fauvart, M., Kint, C.I., Verstraeten, N., Jans, A., Cornelis, P., and Michiels, J. 2011. Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. J. Med. Microbiol. 60, 329-336.   DOI   ScienceOn
94 Fischer, R.J., Oehmcke, S., Meyer, U., Mix, M., Schwarz, K., Fiedler, T., and Bahl, H. 2006. Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J. Bacteriol. 188, 5469-5478.   DOI   ScienceOn
95 Diaz, M., Esteban, A., Fernandez-Abalos, J.M., and Santamaria, R.I. 2005. The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151, 2583-2592.   DOI   ScienceOn
96 Esteban, A., Diaz, M., Yepes, A., and Santamaria, R.I. 2008. Expression of the pstS gene of Streptomyces lividans is regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiol. 8, 201.   DOI
97 Ferreira, G.M. and Spira, B. 2008. The pst operon of enteropathogenic Escherichia coli enhances bacterial adherence to epithelial cells. Microbiology 154, 2025-2036.   DOI   ScienceOn
98 Fisher, S.L., Kim, S.K., Wanner, B.L., and Walsh, C.T. 1996. Kinetic comparison of the specificity of the vancomycin resistance VanS for two response regulators, VanR and PhoB. Biochemistry 35, 4732-4740.   DOI   ScienceOn
99 Fraley, C.D., Rashid, M.H., Lee, S.S., Gottschalk, R., Harrison, J., Wood, P.J., Brown, M.R., and Kornberg, A. 2007. A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc. Natl. Acad. Sci. USA 104, 3526-3531.   DOI   ScienceOn
100 Gangaiah, D., Kassem, II, Liu, Z., and Rajashekara, G. 2009. Importance of polyphosphate kinase 1 for Campylobacter jejuni viable-butnonculturable cell formation, natural transformation, and antimicrobial resistance. Appl. Environ. Microbiol. 75, 7838-7849.   DOI   ScienceOn
101 Gebhard, S., Ekanayaka, N., and Cook, G.M. 2009. The low-affinity phosphate transporter PitA is dispensable for in vitro growth of Mycobacterium smegmatis. BMC Microbiol. 9, 254.   DOI   ScienceOn