• Title/Summary/Keyword: Phase information

Search Result 6,942, Processing Time 0.033 seconds

An Efficient 3D Measurement Method that Improves the Fringe Projection Profilometry (Fringe Projection Profilometry를 개선한 효율적인 3D 측정 기법)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1973-1979
    • /
    • 2016
  • As technologies evolve, diverse 3D measurement techniques using cameras and pattern projectors have been developed continuously. In 3D measurement, high accuracy, fast speed, and easy implementation are very important factors. Recently, 3D measurement using multi-frequency fringe patterns for absolute phase computation has been widely used in the fringe projection profilometry. This paper proposes an improved method to compute the object's absolute phase using the reference plane's absolute phase and phase difference between the object and the reference plane. This method finds the object's absolute phase by adding the difference between the reference plane's wrapped phase and the object's wrapped phase to the reference plane's absolute phase already obtained in the calibration stage. Through this method, there is no need to obtain multi-frequency fringe patterns about new object for the absolute phase computation. Instead, we only need the object's phase difference relative to the reference planes's phase in the measurement stage.

Mixed Dual-rail Data Encoding Method Proposal and Verification for Low Power Asynchronous System Design (저전력 비동기식 시스템 설계를 위한 혼합형 dual-rail data encoding 방식 제안 및 검증)

  • Chi, Huajun;Kim, Sangman;Park, Jusung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.96-102
    • /
    • 2014
  • In this paper, we proposed new dual-rail data encoding that mixed 4-phase handshaking protocol and 2-phase handshaking protocol for asynchronous system design to reduce signal activities and power consumption. The dual-rail data encoding 4-phase handshaking protocol should leat to much signal activities and power consumption by return to space state. Ideally, the dual-rail data encoding 2-phase handshaking protocol should lead to faster circuits and lower power consumption than the dual-rail 4-phase handshaking protocol, but can not designed using standard library. We use a benchmark circuit that contains a multiplier block, an adder block, and latches to evaluate the proposed dual-rail data encoding. The benchmark circuit using the proposed dual-rail data encoding shows an over 35% reduction in power consumption with 4-phase dual-rail data encoding.

System Phase Noise for Mobile Satellite Communication Service (이동형 위성통신 서비스를 위한 시스템 위상 잡음)

  • Kim, Young-Wan;Jang, Myeong-Shin;Baek, Wha-Jong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.735-738
    • /
    • 2005
  • The phase error in the digital transmission system are generated by random phase noise and tracking phase error due to doppler phenomenon. In the mobile satellite communication system that generates the doppler frequency, which is a system with a movement, the proper system phase noise spectrum should be designed based on analyses for phase noise and static phase error effects. Based on the analyses of the doppler frequency and the phase error for bilateral satellite communication system providing an asynchronous service, the phase noise spectrums for the mobile satellite communication are designed in this paper. Also, the available transmission services under the less doppler effect are proposed and the proper signal source units for a required transmission system can be designed under the proposed system phase noise spectrum.

  • PDF

A Study on Effects of Offset Error during Phase Angle Detection in Grid-tied Single-phase Inverters based on SRF-PLL (SRF-PLL을 이용한 계통연계형 단상 인버터의 전원 위상각 검출시 옵셋 오차 영향에 관한 연구)

  • Kwon, Young;Seong, Ui-Seok;Hwang, Seon-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.73-82
    • /
    • 2015
  • This paper proposes an ripple reduction algorithm and analyzes the effects of offset and scale errors generated by voltage sensor while measuring grid voltage in grid-tied single-phase inverters. Generally, the grid-connected inverter needs to detect the phase angle information by measuring grid voltage for synchronization, so that the single-phase inverter can be accurately driven based on estimated phase angle information. However, offset and scale errors are inevitably generated owing to the non-linear characteristics of voltage sensor and these errors affect that the phase angle includes 1st harmonic component under using SRF-PLL(Synchronous Reference Frame - Phase Locked Loop) system for detecting grid phase angle. Also, the performance of the overall system is degraded from the distorted phase angle including the specific harmonic component. As a result, in this paper, offset and scale error due to the voltage sensor in single-phase grid connected inverter under SRF-PLL is analyzed in detail and proportional resonant controller is used to reduce the ripples caused by the offset error. Especially, the integrator output of PI(Proportional Integral) controller in SRF-PLL is selected as an input signal of the proportional resonant controller. Simulation and experiment are performed to verify the effectiveness of the proposed algorithm.

Optical Image Encryption Based on Characteristics of Square Law Detector (세기검출기를 이용한 광 영상 암호화)

  • Lee, Eung-Dae;Park, Se-Jun;Lee, Ha-Un;Kim, Su-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.34-40
    • /
    • 2002
  • In this paper, a new encryption method for a binary image using Phase modulation and Fourier transform is proposed. For decryption we use the characteristics of square law detector. In encryption process, a key image is obtained by phase modulation of 256 level random pattern and its Fourier transformation, and input image is encrypted by Fourier transforming the multiplication of the phase modulated random pattern and phase modulated input image. The encrypted image and key image have only phase information, so they can not be copied or counterfeited and the original image can not be decrypted without the key image. To reconstruct the original image, each phase mask of the key image and the encrypted image must be placed on each path of the Mach-Zehnder interferometry with Fourier transform lens and the output image is obtained in the form of intensity in the CCD(Charge Coupled Device) camera. The real-time decryption is possible in the proposed system by use of a LCD as a phase modulator and a CCD camera as an intensity detector. The proposed method shows a good performance in the computer simulation and optical experiment as an encryption scheme.

Elementary School 5th Students' Understanding of the Illustrations on the Phase change of the Moon in Science Textbook of 2007 and 2009 Revised National Curriculum (2007과 2009 개정 과학교과서에 제시된 달의 위상 변화 삽화에 대한 초등학교 5학년 학생들의 이해)

  • Yang, Il-Ho;Kim, Jung-Yun;Lim, Sung-Man
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.1
    • /
    • pp.56-65
    • /
    • 2015
  • The purpose of this study is to investigate how elementary school student understands or students understand the illustrations on the phase change of the Moon in science textbook and to find out how textbook illustration helps students form the conception of the phase change of the Moon. To identify this purpose, we selected illustrations on the phase change of the Moon in the science textbook revised in 2007 and 2009 revised science textbook. For this study we selected and interviewed 20 students in the fifth grade. We integrated all data collected through interviews and created a transcription and a protocol and then, confirmed scientific conceptions related to the phase change of the Moon in students' illustration reading. The result are as followings: First, students read more scientific conceptions related to the phase change of the Moon in illustration of the 2009 revised science textbook which is presented with the universal observer's view point and the earth observer's view point. Second, students who find meaning in the various elements of the illustration and interpret with the integration of the various elements, get a lot of relevant information from illustration. All students have no differences recognizing the elements presented in illustration. But there are differences of contents of illustration reading depending on how students interpret the illustrations with integration of the various elements and if students cannot figure out the four scientific concepts needed to understand the phase change of the Moon, they ignore the information provided by illustration or analysis in their own way according to information provided by illustration. So misconception appears in this process.

Comparison and Analysis of Name-Based Routing Protocols for Information-Centric Network (정보 중심 네트워크를 위한 이름 기반 라우팅 프로토콜의 비교 및 분석)

  • Kim, Jung-Jae;Ryu, Min-Woo;Cha, Si-Ho;Cho, Kuk-Huyn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1969-1975
    • /
    • 2013
  • ICN (Information-Centric Network) is a next generation Internet communication technology for converting existing Internet communication paradigm to information-based communication paradigm to efficiently use a large amount of information that exists on the Internet. Therefore, unlike existing Internet communication technologies focused on the process of communication using the host address, ICN focuses on the purpose of communication for each information by defining the information of everything that exists on the Internet. For this purpose, ICN uses NbR (Name-based Routing) methods that assign a name to each piece of information, all routers participating in ICN have the physical storage so that they are able to share information with each other. NbR methods on ICN are divided into one-phase routing and two-phase routing depending on how to reach at the storage of each router. However, currently proposed NbR methods cause many problems because they do not reflect the unique characteristics of ICN. Therefore, this paper looked at various NbR issues from caching, access time, distribution, mobility, scaliability, and dissemination of information for an efficient NbR method, and analyzed existing methods proposed for ICN. This paper also proposed a research direction to study the efficient NbR for ICN based on the analysis information.

Minimizing Design of the Schiffman Phase Shifter Using the Defected Ground Structure (결함접지면을 이용한 쉬프만 위상 천이기의 소형화)

  • Kim, Gi-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1745-1752
    • /
    • 2009
  • This Paper represents a new method, which uses defected ground structure (DGS) on the ground planes of microstrip lines, to reduce the size of the Schiffman phase shifter. DGS on the microstrip line shows an increased slow-wave effect due to the additional equivalent L and C components. So the electrical length of transmission line with DGS is longer than that of standard transmission line for the same physical length. Then, the length of transmission line with DGS can be shortened in order to maintain the original electrical length to be same. The performances of reduced phase shifter with DGS are quite similar to the ones of original Schiffman phase shifters. We can reduce the size about 15% using the DGS in original Schiffman phase shifter.

A Clock-Data Recovery using a 1/8-Rate Phase Detector (1/8-Rate Phase Detector를 이용한 클록-데이터 복원회로)

  • Bae, Chang-Hyun;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.97-103
    • /
    • 2014
  • In this paper, a clock-data recovery using a 1/8-rate phase detector is proposed. The use of a conventional full or half-rate phase detector requires relatively higher frequency of a recovered clock, which is a burden on the design of a sampling circuit and a VCO. In this paper, a 1/8-rate phase detector is used to lower the frequency of the recovered clock and a linear equalizer is used as a input circuit of a phase detector to reduce the jitter of the recovered clock. A test chip fabricated in a 0.13-${\mu}m$ CMOS process is measured at 1.5-GHz for a 3-Gb/s PRBS input and 1.2-V power supply.

Improved Phase Synthesis for Parametric Stereo Audio Coding (파라메트릭 스테레오 오디오 부호화를 위한 향상된 위상 합성 기법)

  • Hyun, Dong-Il;Park, Young-Cheol;Youn, Dae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.184-190
    • /
    • 2013
  • Parametric stereo(PS) audio coding is a specific version of spatial audio coding. In this paper, the problem due to the conventional synthesis of phase differences. In the conventional upmix matrix, phase differences are synthesized not only on downmix signal but also ambient signal, which violates the assumption that the ambient signals are anti-phased. Deterioration due to the phase synthesis is analyzed, especially, for low interchannel correlation. To solve this problem, new upmix matrix is proposed, which synthesizes phase differences only on downmix signal. The performance of the proposed upmix matrix is verified by the subjective listening tests.