• Title/Summary/Keyword: Phase Change Material(PCM)

Search Result 165, Processing Time 0.027 seconds

Development of a Heat Regenerator Using High Temperature Phase Change Material : Part I Prediction of Heat Transfer Phenomena in a Single Module of Phase Change Material (초고온 상변화 물질을 이용한 열회수장치 개발:Part I 축열재 모듈의 열전달 현상 해석)

  • 박준규;서경원;김상진
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.258-267
    • /
    • 1993
  • A mathematical model has been developed to describe heat transfer phenomena in a PCM (phase change material) module for development of an energy recovery system. The PCM module, melting point of which is around 1673 K, consists of silicon(96.8%), aluminium(2.7%) and marginal amounts of impurities such as Ca, Fe and Ti. The module is covered by a capsule that consists of SiC(58%) and graphite(42%). Physical properties that are required for model predictions were cited from the references. The apparent capacity method and the postiterative method wert used in the mathematical model to describe the phase changing mechanism. Temperature and velocity of fluid are the major variables in the model calculation. For the gas temperature of 1773 K that simulates real operating conditions, the prediction shows that PCM is rapidly melted to axial direction. However, for the gas temperature of 3000 K that is higher than the real conditions, PCM is melted rapidly to the radial direction. The gas velocity has no influence on the melting phenomena of the PCM except when the gas velocity is relatively low. At the low gas velocity asymmetry of the temperature profiles in PCM is obtained.

  • PDF

Effect of Phase Change Material on Hydration Heat of Mortar with Fly Ash and Blast Furnace Slag (상전이물질이 플라이애시 및 고로슬래그를 혼입한 모르타르의 수화발열에 미치는 영향)

  • Nam, Yi-Hyun;Jang, Seok-Joon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Phase change material(PCM) has the capacity to absorb or release energy in heat when the phase changes. This study conducted to investigate the effect of strontium-based PCM on the hydration heat and mechanical properties of mortar with fly ash and blast furnace slag. The amounts of PCM were 1%, 2%, 3%, 4%, and 5% by the cementitious materials weight. The tests about mortar flow, semi-adiabatic temperature rise, compressive and flexural strength tests were carried out for twelve types of mortar mixtures. The test results indicated that the use of PCM was effective to reduce hydration heat and retard hydration of mortar with industrial by-products. In particular, the heat generation rate of mortars with fly ash was lower than that of mortars with blast furnace slag. The compressive strength of mortar with fly ash and blast furnace slag were decreased with increasing PCM ratio.

Quality evaluations of bell pepper in cold system combined with TEM (thermoelectric materials) and PCM (phase change material) (PCM을 장착한 열전소자 냉각시스템의 저장 중 피망의 품질 평가)

  • Sung, Jung-Min;Kim, So-Hee;Kim, Byeong-Sam;Kim, Jong-Hoon;Kim, Ji-Young;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2016
  • For the distribution of fresh produce, the thermoelectric cooling system combined with thermo electric materials (TEM) and phase change material (PCM) was studied. The PCM used this study was produced by in-situ polymerization technology which referred microencapsulation of hydrocarbon (n-tetradecane and n-hexadecane). In this study, quality characteristics of bell peppers in thermoelectric cooling system combined with TEM and PCM were analyzed and control was placed in an EPS (expanded polystyrene) box. As a result of quality characteristics analysis, weight of bell peppers decreased and moisture content of bell peppers was 90.96~94.43% during storage. Vitamin C content of bell pepper decreased during storage and reduction ratio of control was higher than that of BPT-5 treatment(bell pepper in thermoelectric cooling system with PCM which is kept the temperature at $5^{\circ}C$). The result of color value, on 21 day, ${\Delta}E$ value of BPT-5 treatment was 5.05 while that of control was 41.8. On 21 day, total bacteria count of BPT-5 treated bell pepper shown less than that of control. In conclusion, it suggested that the thermoelectric cooling system combined with PCM improved quality of fresh produce during transportation and storage.

Design of Novel 1 Transistor Phase Change Memory

  • Kim, Jooyeon;Kim, Byungcheul
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • A novel memory is reported, in which $Ge_2Sb_2Te_5$ (GST) has been used as a floating gate. The threshold voltage was shifted due to the phase transition of the GST layer, and the hysteretic behavior is opposite to that arising from charge trapping. Finite Element Modeling (FEM) was adapted, and a new simulation program was developed using c-interpreter, in order to analyze the small shift of threshold voltage. The results show that GST undergoes a partial phase transformation during the process of RESET or SET operation. A large $V_{TH}$ shift was observed when the thickness of the GST layer was scaled down from 50 nm to 25 nm. The novel 1 transistor PCM (1TPCM) can achieve a faster write time, maintaining a smaller cell size.

An Experimental Study of Accelerating Phase Change Heat Transfer

  • Oh, Yool-Kwon;Park, Seul-Hyun;Cha, Kyung-Ok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1882-1891
    • /
    • 2001
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of a phase-change material (PCM). Furthermore, the present study considered constant heat flux boundary conditions unlike many of the previous researches adopted constant wall temperature conditions. Therefore, in the present study, modified dimensionless parameters such as Ste* and Ra* were used. Also, general relationships between melting with ultrasonic vibrations and melting without ultrasonic vibrations were established during the melting of PCM. Experimental observations show that the effect of ultrasonic vibrations on heat transfer is very important throughout the melting process. The results of the present study reveal that ultrasonic vibrations accompany the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. They enhance the melting process as much as 2.5 tildes, compared with the result of natural melting. Also, energy can be saved by applying ultrasonic vibrations to the natural melting. In addition, various time-wise dimensionless numbers provide conclusive evidence of the important role of ultrasonic vibrations on the melting phenomena.

  • PDF

Thin Film Deposition of Antimony Tellurides for Ge-Sb-Te Compounds

  • Han, Byeol;Kim, Yu-Jin;Park, Jae-Min;Mayangsari, Tirta R.;Lee, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.330.1-330.1
    • /
    • 2014
  • 개인용 노트북, 태블릿 PC, 핸드폰 기술 발전에 의해 언제 어디서나 데이터를 작성하고 기록하는 일들이 가능해졌다. 특히 cloud 시스템을 이용하여 데이터를 휴대기기에 직접 저장하지 않고 server에 기록하는 일들이 가능해짐에 따라 server 기기의 성능, server-room power 및 space 에 대한 관심이 증가하였다. Storage class memory (SCM) 이란 memory device와 storage device의 장점을 결합한 memory를 일컫는 기술로 현재 소형 디바이스 부분부터 점차 그 영역을 넓히고 있다. 그중 phase change material을 이용한 phase change memory (PCM) 기술이 가장 각광받고 있다. PCM의 경우 scaling됨에 의해 cell간의 열 간섭으로 인한 data 손실의 우려가 있어 cell의 면적을 최소화 하여 소자를 제작하여야 한다. 기존의 sputtering등의 PVD 방법으로는 한계가 있어 ALD 공정을 이용한 PCM에 대한 연구가 활발히 진행중이다. 특히 tellurium 원료기체로 silyl 화합물 [1]을 사용하여 주로 $Ge_2Sb_2Te_5$의 조성에 초점을 맞춰 진행되고 있으나, 세부 공정에 대한 기본적인 연구는 미비하다. 본 연구에서는 Ge-Sb-Te 3원계 박막을 형성하기 위한 Sb-Te 화합물의 증착 공정에 대한 연구를 수행하였다. 특히 원료기체로 Si이 없는 새로운 Te 원료기체를 이용하여 조성 조절을 하였고, 박막의 물성을 분석하였다. 또한 공정온도에 따른 박막의 물성 변화를 분석하였다.

  • PDF

A numerical analysis of the PCM applied Thermal Protection System (상변화물질을 이용한 열방어체계의 수치해석 연구)

  • Oh, Chang-Mook;Yoo, Young-June;Lee, Hyung-Joo;Min, Sung-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.622-627
    • /
    • 2010
  • This paper is focused on the numerical analysis of two Thermal Protection Systems. Both systems have been provided two different temperature of heating at two walls. Outer wall is heated by high temperature($T_{max}$). Inner wall is heated by heat source($710W/m^2$) while the outer wall is heated. Each system has been provided one side heating(outer wall only) and both side heating respectively. The effects of the heat transfer of both sides of wall, PCM temperature variance through the operation time and Inner space average temperature are investigated. The results have shown that the duration of latent heat mainly depends on the materials, the direction of heat transfer and the heat source and these factors should be concerned in the future.

  • PDF

Preparation and Thermal Properties of Polystyrene Nanoparticles Containing Phase Change Materials as Thermal Storage Medium (열저장 매체로서 상변환 물질을 함유하는 폴리스티렌 나노입자의 제조 및 열적 특성)

  • Park, Soo-Jin;Kim, Ki-Seok;Hong, Sung-Kwon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.8-13
    • /
    • 2005
  • Polystyrene (PS) particles containing the phase change material (PCM) were synthesized by miniemulsion polymerization. The polymer particles prepared with different parameters were investigated in terms of average particle size, particle distribution, and latent heat storage of encapsulated paraffin wax (PW) as PCM. The morphology and particle features of PS particles were analyzed by scanning electron microscope and particle size analyzer, respectively. As a result, the diameters of PS particles were adjusted with manufacturing conditions. The stable and spherical PS particles of nanosize were obtained by miniemulsion polymerization, which could be attributed to the prevention of Ostwald ripening by cosurfactant. Thermal properties of PS particle containing PCM were studied by differential scanning calorimetry. From DSC freeze-thaw cycle, PCM coated with PS exhibited the thermal energy storage and release behaviors, and the latent heat was found to be a maximum 145 J/g. It was noted that PS particles containing PCM showed a good potential as a thermal energy storage medium.

Analysis of the Charging and Discharging Performance of a New Wavy Cylindrical Shape Capsule (굴곡진 실린더형 캡슐 형상의 축열·방열 성능 해석)

  • Hong, Sang Woo;Lee, Yong Tae;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.301-307
    • /
    • 2014
  • This paper presents a numerical study on the constrained melting of a phase change material inside various capsule containers, using water and HDPE (High Density Polyethylene) as a PCM and a capsule material, respectively. The computations are based on an iterative, finite-volume numerical procedure that incorporates a single-domain enthalpy formulation for simulation of the phase change phenomenon. Using the enthalpy method, various capsule configurations, such as a capsule from E company, an isochoric cylinder capsule, an equivalent diameter sphere capsule, and an isochoric sphere capsule, are used to investigate the effect of capsule configurations on the charging and discharging performance. A transient three-dimensional model is used for each case. The simulation results show that the capsule from E company results in a higher melting and solidification rate of the PCM, than the other capsule configurations considered in this research.

A Study on the Heat Pump-Latent Heat Storage Type (열펌프-잠열축열 온돌 시스템 연구)

  • 송현갑;박문수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.385-390
    • /
    • 2001
  • The Ondol system using both air-to-water heat pump and PCM(Phase Change Material) was constructed, and the effects of ambient air temperature on COP(Coefficient of Performance) of heat pump, the amount of heat supplied to the Ondol in the heating process, the heat storage in the PCM and the variation of Ondol room temperature were analyzed. The results from this study could be summarized as follows: 1. The COP of the heat pump (3 PS) was in proportion to the ambient air temperature. 2. When the ambient air temperature was varied between -10$^{\circ}C$ and -7$^{\circ}C$, the air temperature in the Ondol room was maintained between 16$^{\circ}C$ and 22$^{\circ}C$. As the results, it was certified that the heat pump-latent heat storage type Ondol system could be a comfortable residential heating system in the winter. 3. The maximum radiation and convection heat transfer from Ondol surface was 206.2 kJ/㎥hr and 82.6 kJ/㎥hr respectively. As the results, it could be confirmed that the radiation was major heat transfer mechanism for the Ondol room heating.

  • PDF