DOI QR코드

DOI QR Code

Effect of Phase Change Material on Hydration Heat of Mortar with Fly Ash and Blast Furnace Slag

상전이물질이 플라이애시 및 고로슬래그를 혼입한 모르타르의 수화발열에 미치는 영향

  • 남의현 (충남대학교 융복합시스템공학과) ;
  • 장석준 (한국시설안전공단 시설성능연구소) ;
  • 김선웅 (충남대학교 융복합시스템공학과) ;
  • 박완신 (충남대학교 건설공학교육과) ;
  • 윤현도 (충남대학교 건축공학과)
  • Received : 2017.06.05
  • Accepted : 2018.07.11
  • Published : 2019.01.01

Abstract

Phase change material(PCM) has the capacity to absorb or release energy in heat when the phase changes. This study conducted to investigate the effect of strontium-based PCM on the hydration heat and mechanical properties of mortar with fly ash and blast furnace slag. The amounts of PCM were 1%, 2%, 3%, 4%, and 5% by the cementitious materials weight. The tests about mortar flow, semi-adiabatic temperature rise, compressive and flexural strength tests were carried out for twelve types of mortar mixtures. The test results indicated that the use of PCM was effective to reduce hydration heat and retard hydration of mortar with industrial by-products. In particular, the heat generation rate of mortars with fly ash was lower than that of mortars with blast furnace slag. The compressive strength of mortar with fly ash and blast furnace slag were decreased with increasing PCM ratio.

스트론튬계 상전이물질은 특정한 온도에서 물질의 상태가 변함에 따라서 열을 흡수하거나 방출하게 된다. 본 연구의 목적은 스트론튬계 상전이물질의 혼입이 플라이애시 치환 모르타르 및 고로슬래그 치환 모르타르의 수화발열 및 역학적 특성에 미치는 영향을 실험적으로 평가하는 것이다. 스트론튬계 상전이물질의 혼입량은 결합재 질량의 1, 2, 3, 4, 5%로 하였다. 총 12개 수준의 모르타르 배합에 대해서 모르타르 흐름성능, 간이수화열온도상승, 압축 및 휨강도 실험을 각각 수행하였다. 실험결과 본 연구에서 사용한 스트론튬계 상전이물질은 모르타르의 수화열 저감 및 수화지연에 효과적인 것으로 판단된다. 특히 플라이애시 치환 모르타르의 최대온도 상승량은 고로슬래그 치환 모르타르의 최대온도 상승량에 비해 낮게 나타났다. 플라이애시 및 고로슬래그 치환 모르타르의 압축강도는 상전이물질 혼입량이 증가함에 따라 감소하는 것으로 나타났다.

Keywords

References

  1. Choi, Y. W., Park, M. S., Jeong, J. G., Choi B. G., and Kim, K. H. (2013), A Study on Estimation Model of Strength Development of Concrete Using Fly Ash and Ground Granulated Blast-Furnace Slag, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(5), 87-93. https://doi.org/10.11112/jksmi.2013.17.5.087
  2. Jang, J. D., Cho, H. D., and Park, S. W. (2015), Properties of Hydration Heat of High-Strength Concrete and Reduction Strategy for Heat Production, Journal of the Korea Institute of Building Construction, 12(2), 203-210. https://doi.org/10.5345/JKIBC.2012.12.2.203
  3. Jang, S. J., Kim, B. S., Kim, S. W., Kim, S. W., Park, W. S., and Yun, H. D. (2016), Hydration Heat and Strength Characteristics of Cement Mortar with Phase Change Materials(PCMs), Journal of the Korea Concrete Institute, 28(6), 665-672. https://doi.org/10.4334/JKCI.2016.28.6.665
  4. Kim, D. M., Jang, M. W., Park, K. Y., and Cha, C. Y. (2010), Physical Properties of Early Strength Concrete Using Poly Carboxylic Acid Type Admixtures for Accelerated Hydration Reaction, Journal of the Korea Concrete Institute, 22(2), 183-184.
  5. Kim, H. S., and Lee, D. U. (2009), A Study on the Properties of Hydration Heat of Mass Concrete using Blast-Furnace Slag Cement and Fly-ash, Journal of the regional association of architectural institute of korea, 11(4), 291-297.
  6. Kim, J. B., Shin, Ki Su and Yang, E. I. (2012), Mechanical Properties of Ultra High Strength Concrete Using Ternary Blended Cement, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(6), 56-62. https://doi.org/10.11112/jksmi.2012.16.6.056
  7. Kim, J. K., and Yang, E. I. (1997), Factors for Hydration Heat and Thermal Stress in Mass Concrete, Journal of the Korea Concrete Institute, 9(3), 15-23.
  8. Kim, M. H., Choi, S. J., Oh, S. D., Kim, Y. R., and Lee, J. H. (2002), A Study on the Effect of Admixture Types and Replacement Ratio on Hydration Heat Reduction of High-Strength Concrete, Journal of the Korea Institute of Building Construction, 2(2), 145-150. https://doi.org/10.5345/JKIC.2002.2.2.145
  9. Kim, S. S., Cho, T. J., and Lee, J. B. (2008), Innovative Transient Thermal Gradient Control to Prevent Early Aged Cracking of Massive Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 12(6), 164-172.
  10. Kim, Y. R., Jung, Y. H., Lee, S. H., Kim, D. S., Khil, B. S., and Kim, W. K. (2006), The Characteristics of Hydration Heat Generation of Low Heat Concrete using Hydration Heat Reducing Admixtures, Journal of the Korea Concrete Institute, 18(2), 709-712.
  11. Korean Building Code and Commentary (2016), Architectural Institute of Korea (in Korea).
  12. Korea Agency for Technology and Standard (KATS) (2006), Methods of Testing Cements: Determination of Strength (KS L ISO 679), Korean Standards Association, KSA, 16 (In Korean).
  13. Korea Agency for Technology and Standard (KATS) (2007), Flow Table for Use in Tests of Hydraulic Cement (KS L 5111), Korean Standards Association, KSA, 5 (In Korea).
  14. Lee, J. W., and Chung, K. S. (2000), Application and Concrete Mix design by Control methods of Thermal Cracking in Mass Concrete Structure considering the Constructional condition, Journal of the architectural institute of Korea Structure & Construction, 16(7), 87-94.
  15. Park, C. K., Lee, S. H., Kim, H. J., Kim, S. J., and Lee, T. W. (2008), The Characteristics of Strength of Development and Hydration Heat on High Volume Fly-Ash Concrete, Journal of the Korea Concrete Institute, 20(1), 417-420.
  16. Park, C. K., Son, S. H., Lee, S. H., Jang, K. U., Jeong, J. H., and Kim, M. S. (2001), Journal of the Korea Concrete Institute, 13(2), 403-408.
  17. Seo, T. S., Lim, C. K., and Cho, Y. G. (2014), Experimental Study on Hydration Heat Control of Mass Concrete by Vertical Pipe Cooling Method, Journal of the Korea Concrete Institute, 26(1), 911-912.
  18. Son, Y. J., Ha, J. D., Um, T. S., Lee, J. R., and Kim, T. H. (2006), Study on the Properties of Dam Concrete Using Low Heat Porland Cementer, Journal of the Korea Concrete Institute, 18(1), 445-448.
  19. The Standard Specification for Reinforced Concrete (2009), Korea Concrete Institute (in Korea).
  20. Yum, C. S., Bae, W. M., Kim, M. S., Beak, D. I., and Kim, K. M. (2006), A Study on Field Applications of Hydration Heat Control in the Mass Concrete Using Oscillating Capillary Tube Heat Pipe, Journal of the Korea Concrete Institute, 18(1), 413-416.