Browse > Article

Preparation and Thermal Properties of Polystyrene Nanoparticles Containing Phase Change Materials as Thermal Storage Medium  

Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Kim, Ki-Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Hong, Sung-Kwon (Polymer Science and Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.29, no.1, 2005 , pp. 8-13 More about this Journal
Abstract
Polystyrene (PS) particles containing the phase change material (PCM) were synthesized by miniemulsion polymerization. The polymer particles prepared with different parameters were investigated in terms of average particle size, particle distribution, and latent heat storage of encapsulated paraffin wax (PW) as PCM. The morphology and particle features of PS particles were analyzed by scanning electron microscope and particle size analyzer, respectively. As a result, the diameters of PS particles were adjusted with manufacturing conditions. The stable and spherical PS particles of nanosize were obtained by miniemulsion polymerization, which could be attributed to the prevention of Ostwald ripening by cosurfactant. Thermal properties of PS particle containing PCM were studied by differential scanning calorimetry. From DSC freeze-thaw cycle, PCM coated with PS exhibited the thermal energy storage and release behaviors, and the latent heat was found to be a maximum 145 J/g. It was noted that PS particles containing PCM showed a good potential as a thermal energy storage medium.
Keywords
miniemulsion polymerization; polystyrene; cosurfactant; Ostwald ripening; freeze-thaw cycle;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 A. Barba and M. Spiga, Sol. Energy, 74, 141 (2003)
2 D. Feldman, M. Shapiro, and P. Fazio, Polym. Eng. Sci., 25, 406 (1985)
3 C. H. Lee and H. K. Choi, Polym. Compos., 19, 704 (1998)
4 G. Akay and L. Tong, J. Colloid Interface Sci., 239, 342 (2001)   DOI   ScienceOn
5 H. Ichikawa and Y. Fukumori, J. Control. Release, 63, 107 (2000)
6 M. Antonietti and K. Landfester, Prog. Polym. Sci., 27, 689 (2002)
7 C. S. Chern and T. J. Chen, Colloids Surf. A: Physicochem. Eng. Asp., 138, 65 (1998)
8 P. L. Tang, E. D. Sudol, M. E. Adams, C. A. Silebi, and M. S. EI-Aasser, Polymer Latexes, American Chemical Society, Washington, DC, 1992
9 C. J. Samer and F. J. Schork, Ind. Eng. Chem. Res., 38, 1801 (1999)   DOI   ScienceOn
10 A. M. Khudhair and M. M. Farid, Energy Converso Manage., 45, 263 (2004)
11 T. R. McCaffery and Y. G. Durant, J. Appl. Polym. Sci., 86, 1507 (2002)
12 G. A. Lane, Solar Heat Storage: Latent Heat Materials, CRC Press, Boca Raton, p 2 (1986)
13 A. Bachtsi and C. Kiparissides, J. Control. Release, 38, 49 (1996)
14 B. Erdem, E. D. Sudol, V. L. Dimonie, and M. S. EI-Aasser, Macromol. Symp., 155,181 (2000)
15 F. J. Schork, G. W. Poehlein, S. Wang, J. Reimers, J. Rodrigues, and C. Samer, Colloids Surf. A: Physicochem. Eng. Asp., 153, 39 (1999)
16 C. D. Anderson, E. D. Sudol, and M. S. EI-Aasser, Macromolecules, 35, 574 (2002)
17 A. Kim, S. J. Park, and J. R. Lee, J. Colloid Interface Sci., 197, 119 (1998)
18 P. J. Blythe, B. R. Morrison, K. A. Mathauer, E. D. Sudol, and M. S. EI-Aasser, Langmuir, 16, 898 (2000)
19 J. W. Gooch, H. Dong, and F. J. Schork, J. Appl. Polym. Sci., 76, 105 (2000)
20 S. J. Park and M. Brendle, J. Colloid Interface Sci., 188, 336 (1997)
21 K. Landfester, N. Bechthold, F. Tiarks, and M. Antonietti, Macromolecules, 32, 5222 (1999)
22 M. S. Lim and H. Chen, J. Polym. Sci.; Part A: Polym. Chem., 38, 1818 (2000)
23 A. Abhat, Sol. Energy, 30, 313 (1983)
24 I. Aizpurua and M. J. Barandiaran, Polymer, 40, 4105 (1999)
25 I. Dincer and M. A. Rosen, Thennal Energy Storage: System and Application. England, John Wiley and Sons, 2002
26 M. N. A. Hawlader, M. S. Uddin, and M. M. Khin, Appl. Energy, 74, 195 (2003)   DOI   ScienceOn