• Title/Summary/Keyword: Pexider equation

Search Result 16, Processing Time 0.02 seconds

ON THE STABILITY OF THE PEXIDER EQUATION IN SCHWARTZ DISTRIBUTIONS VIA HEAT KERNEL

  • Chung, Jae-Young;Chang, Jeong-Wook
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.467-485
    • /
    • 2011
  • We consider the Hyers-Ulam-Rassias stability problem $${\parallel}u{\circ}A-{\upsilon}{\circ}P_1-w{\circ}P_2{\parallel}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$$ for the Schwartz distributions u, ${\upsilon}$, w, which is a distributional version of the Pexider generalization of the Hyers-Ulam-Rassias stability problem ${\mid}(x+y)-g(x)-h(y){\mid}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$, x, $y{\in}\mathbb{R}^n$, for the functions f, g, h : $\mathbb{R}^n{\rightarrow}\mathbb{C}$.

STABILITY OF FUNCTIONAL EQUATIONS WITH RESPECT TO BOUNDED DISTRIBUTIONS

  • Chung, Jae-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.361-370
    • /
    • 2008
  • We consider the Hyers-Ulam type stability of the Cauchy, Jensen, Pexider, Pexider-Jensen differences: $$(0.1){\hspace{55}}C(u):=u{\circ}A-u{\circ}P_1-u{\circ}P_2,\\(0.2){\hspace{55}}J(u):=2u{\circ}\frac{A}{2}-u{\circ}P_1-u{\circ}P_2,\\(0.3){\hspace{18}}P(u,v,w):=u{\circ}A-v{\circ}P_1-w{\circ}P_2,\\(0.4)\;JP(u,v,w):=2u{\circ}\frac{A}{2}-v{\circ}P_1-w{\circ}P_2$$, with respect to bounded distributions.

  • PDF

SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE

  • Lee, Young-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.357-369
    • /
    • 2008
  • We obtain the superstability of a generalized exponential functional equation f(x+y)=E(x,y)g(x)f(y) and investigate the stability in the sense of R. Ger [4] of this equation in the following setting: $$|\frac{f(x+y)}{(E(x,y)g(x)f(y)}-1|{\leq}{\varphi}(x,y)$$ where E(x, y) is a pseudo exponential function. From these results, we have superstabilities of exponential functional equation and Cauchy's gamma-beta functional equation.

ASYMPTOTIC BEHAVIORS OF JENSEN TYPE FUNCTIONAL EQUATIONS IN HALF PLANES

  • Kim, Sang-Youp;Kim, Gyu-Tae;Lee, Gi-Hui;Lee, Jae-Ho;Park, Gwang-Hyun
    • The Pure and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.113-128
    • /
    • 2011
  • Let f : ${\mathbb{R}}{\rightarrow}{\mathbb{C}}$. We consider the Hyers-Ulam stability of Jensen type functional inequality $$|f(px+qy)-Pf(x)-Qf(y)|{\leq}{\epsilon}$$ in the half planes {(x, y) : $kx+sy{\geq}d$} for fixed d, k, $s{\in}{\mathbb{R}}$ with $k{\neq}0$ or $s{\neq}0$. As consequences of the results we obtain the asymptotic behaviors of f satisfying $$|f(px+qy)-Pf(x)-Qf(y)|{\rightarrow}0$$ as $kx+sy{\rightarrow}{\infty}$.