ON THE STABILITY OF THE PEXIDER EQUATION IN SCHWARTZ DISTRIBUTIONS VIA HEAT KERNEL

Jaeyoung Chung and Jeongwook Chang*

Abstract

We consider the Hyers-Ulam-Rassias stability problem $$
\left\|u \circ A-v \circ P_{1}-w \circ P_{2}\right\| \leq \varepsilon\left(|x|^{p}+|y|^{p}\right)
$$ for the Schwartz distributions u, v, w, which is a distributional version of the Pexider generalization of the Hyers-Ulam-Rassias stability problem $$
|f(x+y)-g(x)-h(y)| \leq \varepsilon\left(|x|^{p}+|y|^{p}\right), \quad x, y \in \mathbb{R}^{n},
$$ for the functions $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{C}$.

1. Introduction

Generalizing the well known stability theorem of D. H. Hyers[12] which was motivated by S. M. Ulam[19], Th. M. Rassias[16] and Z. Gajda[9] showed the following stability theorem for the Cauchy equation:

Theorem 1.1. [16, 9] Let f be a mapping from a normed linear space V to a Banach space X satisfying the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \quad p \neq 1, \tag{1.1}
\end{equation*}
$$

for all $x, y \in V(x \neq 0$ and $y \neq 0$ if $p<0)$. Then there exists a unique function $g: V \rightarrow X$ satisfying

$$
g(x+y)-g(x)-g(y)=0
$$

such that

$$
\|f(x)-g(x)\| \leq \frac{2 \varepsilon}{\left|2^{p}-2\right|}\|x\|^{p}
$$

for all $x \in V(x \neq 0$ if $p<0)$.
Received August 17, 2011. Accepted October 11, 2011.
2000 Mathematics Subject Classification. 39B82, 46F99.
Key words and phrases. Stability, Gauss transforms, heat kernel, distributions, tempered distribution, Cauchy equation, Pexider equation.
*Corresponding author.

The result was further generalized by Y. H. Lee and K. W. Jun[13] for the Hyers-Ulam-Rassias stability theorem for the Pexider equation:

Theorem 1.2. [13] Let f, g, h be mappings from a normed linear space V to a Banach space X satisfying the inequality

$$
\begin{equation*}
\|f(x+y)-g(x)-h(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \quad p \neq 1 \tag{1.2}
\end{equation*}
$$

for all $x, y \in V \backslash\{0\}$. Then there exists a unique function $g: V \rightarrow X$ satisfying

$$
g(x+y)-g(x)-g(y)=0
$$

such that

$$
\|f(x)-g(x)\| \leq \frac{4 \epsilon\left(3+3^{p}\right)}{2^{p}\left|3-3^{p}\right|}\|x\|^{p}
$$

for all $x \in X \backslash\{0\}$.
In this paper, we consider the above stability theorems in the spaces of generalized functions such as the spaces \mathcal{S}^{\prime} and \mathcal{D}^{\prime} of tempered distributions and distributions of L. Schwartz for even integers $p \geq 2$. Note that the above inequalities (1.2) makes no sense if f is a tempered distributions or distribution. Making use of the pullbacks of generalized function we extend the inequality (1.2) to distributions u, v, w as follows:

$$
\begin{equation*}
\left\|u \circ A-v \circ P_{1}-w \circ P_{2}\right\| \leq \varepsilon\left(|x|^{p}+|y|^{p}\right) \tag{1.3}
\end{equation*}
$$

where $A(x, y)=x+y, P_{1}(x, y)=x, P_{2}(x, y)=y, x, y \in \mathbb{R}^{n}$, and $u \circ A, v \circ P_{1}$ and $w \circ P_{2}$ are the pullbacks of u, v, w by A, P_{1} and P_{2}, respectively. Also $|\cdot|$ denotes the Euclidean norm and the inequality $\|\cdot\| \leq \psi(x, y)$ in (1.3) means that $|\langle\cdot, \varphi\rangle| \leq\|\psi \varphi\|_{L^{1}}$ for all test functions $\varphi(x, y)$ defined on $\mathbb{R}^{2 n}$.

As the main result, we prove the following: Let $u, v, w \in \mathcal{D}^{\prime}$ satisfy the inequality (1.3) for some even integer $p \geq 2$. Then, for $p>2$, there exist a unique $a \in \mathbb{C}^{n}$ and complex constants c_{1}, c_{2}, c_{3} such that

$$
\begin{aligned}
& \left\|u-a \cdot x-c_{1}\right\| \leq \frac{4 \epsilon}{2^{p}-2}|x|^{p} \\
& \left\|v-a \cdot x-c_{2}\right\| \leq \frac{\epsilon\left(2^{p}+2\right)}{2^{p}-2}|x|^{p} \\
& \left\|w-a \cdot x-c_{2}\right\| \leq \frac{\epsilon\left(2^{p}+2\right)}{2^{p}-2}|x|^{p}
\end{aligned}
$$

and for $p=2$, there exist a unique $a \in \mathbb{C}^{n}$ and complex constants c_{1}, c_{2}, c_{3} such that

$$
\begin{aligned}
\left\|u-a \cdot x-c_{1}\right\| & \leq 10 \epsilon|x|^{2} \\
\left\|v-a \cdot x-c_{2}\right\| & \leq 11 \epsilon|x|^{2} \\
\left\|w-a \cdot x-c_{3}\right\| & \leq 11 \epsilon|x|^{2}
\end{aligned}
$$

2. Schwartz distributions

We briefly introduce the space $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ of distributions and the space $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ of tempered distributions. Here we use the multi-index notations, $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \alpha!=\alpha_{1}!\cdots \alpha_{n}!, x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $\partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}$, for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$, where \mathbb{N}_{0} is the set of non-negative integers and $\partial_{j}=\frac{\partial}{\partial x_{j}}$. We also denote by $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ the set of all infinitely differentiable functions on \mathbb{R}^{n} with compact supports.

Definition 2.1. A distribution u is a linear form on $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that for every compact set $K \subset \mathbb{R}^{n}$ there exist constants $C>0$ and $k \in \mathbb{N}_{0}$ such that

$$
|\langle u, \varphi\rangle| \leq C \sum_{|\alpha| \leq k} \sup \left|\partial^{\alpha} \varphi\right|
$$

for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with supports contained in K. The set of all distributions is denoted by $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$.

Definition 2.2. We denote by \mathcal{S} or $\mathcal{S}\left(\mathbb{R}^{n}\right)$ the Schwartz space of all infinitely differentiable functions φ in \mathbb{R}^{n} such that

$$
\begin{equation*}
\|\varphi\|_{\alpha, \beta}=\sup _{x}\left|x^{\alpha} \partial^{\beta} \varphi(x)\right|<\infty \tag{2.1}
\end{equation*}
$$

for all $\alpha, \beta \in \mathbb{N}_{0}^{n}$, equipped with the topology defined by the seminorms $\|\cdot\|_{\alpha, \beta}$. The elements of \mathcal{S} are called rapidly decreasing functions and the elements of the dual space \mathcal{S}^{\prime} are called tempered distributions.

We denote by Ω_{j} open subsets of $\mathbb{R}^{n_{j}}$ for $j=1,2$, with $n_{1} \geq n_{2}$.
Definition 2.3. Let $u_{j} \in \mathcal{D}^{\prime}\left(\Omega_{j}\right)$ and $\lambda: \Omega_{1} \rightarrow \Omega_{2}$ a smooth function such that for each $x \in \Omega_{1}$ the derivative $\lambda^{\prime}(x)$ is surjective, that is, the Jacobian matrix $\nabla \lambda$ of λ has rank n_{2}. Then there exists a unique continuous linear map $\lambda^{*}: \mathcal{D}^{\prime}\left(\Omega_{2}\right) \rightarrow \mathcal{D}^{\prime}\left(\Omega_{1}\right)$ such that $\Lambda^{*} u=u \circ \lambda$ when u is a continuous function. We call $\lambda^{*} u$ the pullback of u by λ and often denoted by $u \circ \lambda$.

In particular if λ is a diffeomorphism (a bijection with λ, λ^{-1} smooth functions) the pullback $u \circ \lambda$ can be written as follows:

$$
\begin{equation*}
\langle u \circ \lambda, \varphi\rangle=\left\langle u,\left(\varphi \circ \lambda^{-1}\right)(x)\right|\left(\nabla \lambda^{-1}(x)| \rangle .\right. \tag{2.2}
\end{equation*}
$$

As a matter of fact, the pullbacks $u \circ A, u \circ P_{1}, u \circ P_{2}$ can be written in a transparent way as

$$
\begin{align*}
\langle u \circ A, \varphi(x, y)\rangle & =\left\langle u, \int \varphi(x-y, y) d y\right\rangle \tag{2.3}\\
\left\langle u \circ P_{1}, \varphi(x, y)\right\rangle & =\left\langle u, \int \varphi(x, y) d y\right\rangle \tag{2.4}\\
\left\langle u \circ P_{2}, \varphi(x, y)\right\rangle & =\left\langle u, \int \varphi(x, y) d x\right\rangle \tag{2.5}
\end{align*}
$$

for all test functions $\varphi \in \mathcal{S}\left(\mathbb{R}^{2 n}\right)$.
For more details of distributions we refer the reader to $[11,17]$.

3. Stability in \mathcal{S}^{\prime}

We consider the inequality (1.3) in the space \mathcal{S}^{\prime} of Schwartz tempered distributions. We employ the n-dimensional heat kernel $E_{t}(x)$ given by

$$
\begin{equation*}
E_{t}(x)=(4 \pi t)^{-n / 2} \exp \left(-|x|^{2} / 4 t\right), x \in \mathbb{R}^{n}, t>0 \tag{3.1}
\end{equation*}
$$

It is easy to see that the heat kernel $E_{t}(\cdot)$ belongs to the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ for each $t>0$. Let $u \in \mathcal{S}^{\prime}$. Then its Gauss transform

$$
\tilde{u}(x, t)=\left(u * E_{t}\right)(x)=\left\langle u_{y}, E_{t}(x-y)\right\rangle, \quad x \in \mathbb{R}^{n}, t>0
$$

is well defined. As a matter of fact the following result holds[10]:
Lemma 3.1. [14] Let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Then its Gauss transform $\tilde{u}(x, t)$ is a C^{∞}-solution of the heat equation satisfying:
(i) There exist positive constants C, M, N and δ such that

$$
\begin{equation*}
|\tilde{u}(x, t)| \leq C t^{-M}(1+|x|)^{N} \quad \text { in } \quad \mathbb{R}^{n} \times(0, \delta) \tag{3.2}
\end{equation*}
$$

(ii) $\tilde{u}(x, t) \rightarrow u$ as $t \rightarrow 0^{+}$in the sense that for every $\varphi \in \mathcal{S}$,

$$
\langle u, \varphi\rangle=\lim _{t \rightarrow 0^{+}} \int \tilde{u}(x, t) \varphi(x) d x
$$

Conversely, every C^{∞}-solution $U(x, t)$ of the heat equation satisfying the estimate (3.2) can be uniquely expressed as $U(x, t)=\tilde{u}(x, t)$ for some $u \in \mathcal{S}^{\prime}$.

We refer the reader to ([11], chapter VI) for pullbacks of distributions and to $[10,13]$ for more details of distributions and tempered distributions.

It is well known that the weak semigroup property of the heat kernel

$$
\begin{equation*}
\left(E_{t} * E_{s}\right)(x)=E_{t+s}(x) \tag{3.3}
\end{equation*}
$$

holds for convolution. This semigroup property will be very useful later.
Throughout the paper, we denote by $H_{2 \gamma}$ the heat polynomial of degree $2 \gamma \in \mathbb{N}_{0}^{n}$ which is given by

$$
\begin{equation*}
H_{2 \gamma}(x, t)=\left[\xi^{2 \gamma} * E_{t}(\xi)\right](x)=(2 \gamma)!\sum_{0 \leq \alpha \leq \gamma} \frac{t^{|\alpha|} x^{2 \gamma-2 \alpha}}{\alpha!(2 \gamma-2 \alpha)!} . \tag{3.4}
\end{equation*}
$$

Note that if $|\gamma|=1$ we have

$$
H_{2 \gamma}(x, t)=x^{2 \gamma}+2 t=x_{j}^{2}+2 t
$$

where j-th coordinate of γ equals 1 , and for $|\gamma|=1,2, \ldots$

$$
H_{2 \gamma}(x, 0)=x^{2 \gamma}, \quad H_{2 \gamma}(0, t)=\frac{(2 \gamma)!t^{|\gamma|}}{\gamma!} .
$$

We first prove the following stability theorem.
Lemma 3.2. Let $f, g, h: \mathbb{R}^{n} \times(0, \infty) \rightarrow \mathbb{C}$ be continuous functions satisfying the inequality

$$
\begin{equation*}
|f(x+y, t+s)-g(x, t)-h(y, s)| \leq \epsilon\left(H_{2 \gamma}(x, t)+H_{2 \gamma}(y, s)\right) \tag{3.5}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}, t, s>0$ and $|\gamma| \geq 1$. Then, for $|\gamma|>1$, there exist a unique $a \in \mathbb{C}^{n}$, a unique $b \in \mathbb{C}$ and complex constants c_{1}, c_{2} and c_{3} such that

$$
\begin{aligned}
\left|f(x, t)-a \cdot x-b t-c_{1}\right| & \leq \epsilon \psi_{1, \gamma}(x, t), \\
\left|g(x, t)-a \cdot x-b t-c_{2}\right| & \leq \epsilon \psi_{2, \gamma}(x, t), \\
\left|h(x, t)-a \cdot x-b t-c_{3}\right| & \leq \epsilon \psi_{2, \gamma}(x, t),
\end{aligned}
$$

for all $x \in \mathbb{R}^{n}, t>0$, where

$$
\begin{aligned}
& \psi_{1, \gamma}(x, t)=(2 \gamma)!\sum_{0 \leq \alpha \leq \gamma} \frac{2^{|\alpha|+2} t^{|\alpha|} x^{2 \gamma-2 \alpha}}{\left(2^{|2 \gamma|}-2^{|\alpha|+1}\right) \alpha!(2 \gamma-2 \alpha)!}, \\
& \psi_{2, \gamma}(x, t)=(2 \gamma)!\sum_{0 \leq \alpha \leq \gamma} \frac{\left(2^{|2 \gamma|}+2^{|\alpha|+1}\right) t^{|\alpha|} x^{2 \gamma-2 \alpha}}{\left(2^{|2 \gamma|}-2^{|\alpha|+1}\right) \alpha!(2 \gamma-2 \alpha)!},
\end{aligned}
$$

and for $|\gamma|=1$, there exist a unique $a \in \mathbb{C}^{n}, c_{1}, c_{2}, c_{3} \in \mathbb{C}$ and r_{1}, r_{2} : $(0, \infty) \rightarrow[0, \infty)$ with $r_{1}(t), r_{2}(t) \rightarrow 0$ as $t \rightarrow 0^{+}$such that

$$
\begin{aligned}
\left|f(x, t)-a \cdot x-c_{1}\right| & \leq 10 \epsilon x^{2 \gamma}+r_{1}(t) \\
\left|g(x, t)-a \cdot x-c_{2}\right| & \leq 11 \epsilon x^{2 \gamma}+r_{2}(t) \\
\left|h(x, t)-a \cdot x-c_{3}\right| & \leq 11 \epsilon x^{2 \gamma}+r_{2}(t)
\end{aligned}
$$

for all $x \in \mathbb{R}^{n}, t>0$.
Proof. Let $x=y=0$ in (3.5). Then by the triangle inequality we have

$$
\begin{align*}
& |g(0, t)| \leq \epsilon \frac{(2 \gamma)!}{\gamma!}\left(t^{|\gamma|}+s^{|\gamma|}\right)+|f(0, t+s)-h(0, s)| \tag{3.6}\\
& |h(0, s)| \leq \epsilon \frac{(2 \gamma)!}{\gamma!}\left(t^{|\gamma|}+s^{|\gamma|}\right)+|f(0, t+s)-g(0, t)| \tag{3.7}
\end{align*}
$$

for all $t, s>0$. Thus it follows from (3.6), (3.7) and the continuity of f

$$
c_{2}:=\limsup _{t \rightarrow 0^{+}} g(0, t), \quad c_{3}:=\limsup _{s \rightarrow 0^{+}} h(0, s)
$$

exist. Choose a sequence $s_{n}, n=1,2, \ldots$, of positive numbers which tends to 0 as $n \rightarrow \infty$ such that $h\left(0, s_{n}\right) \rightarrow c_{3}$ as $n \rightarrow \infty$. Putting $y=0, s=s_{n}$ and letting $n \rightarrow \infty$ we have

$$
\begin{equation*}
\left|f(x, t)-g(x, t)-c_{3}\right| \leq \epsilon H_{2 \gamma}(x, t) \tag{3.8}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}, t>0$. Similarly we have

$$
\begin{equation*}
\left|f(y, s)-h(y, s)-c_{2}\right| \leq \epsilon H_{2 \gamma}(y, s) \tag{3.9}
\end{equation*}
$$

for all $y \in \mathbb{R}^{n}, s>0$. From (3.5), (3.8), (3.9) and the triangle inequality we have

$$
\begin{equation*}
|F(x+y, t+s)-F(x, t)-F(y, s)| \leq 2 \epsilon\left(H_{2 \gamma}(x, t)+H_{2 \gamma}(y, s)\right) \tag{3.10}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}, t, s>0$, where $F(x, t)=f(x, t)-c_{2}-c_{3}$.
We first prove for $|\gamma|>1$. For this case, we can follow the same approach as in $[16,9]$. Indeed, replacing both x and y by $\frac{x}{2}$, both t and s by $\frac{t}{2}$ in (3.10) we have

$$
\left|F(x, t)-2 F\left(2^{-1} x, 2^{-1} t\right)\right| \leq 4 \epsilon H_{2 \gamma}\left(2^{-1} x, 2^{-1} t\right)
$$

for all $x \in \mathbb{R}^{n}, t>0$. Making use of the induction argument and triangle inequality we have

$$
\begin{align*}
\left|F(x, t)-2^{m} F\left(2^{-m} x, 2^{-m} t\right)\right| & \leq 2 \epsilon \sum_{j=1}^{m} 2^{j} H_{2 \gamma}\left(2^{-j} x, 2^{-j} t\right) \tag{3.11}\\
& \leq 2 \epsilon(2 \gamma)!\sum_{0 \leq \alpha \leq \gamma} a_{m, \alpha} \frac{t^{|\alpha|} x^{2 \gamma-2 \alpha}}{\alpha!(2 \gamma-2 \alpha)!}
\end{align*}
$$

for all $n \in \mathbb{N}, x \in \mathbb{R}^{n}, t>0$, where $a_{m, \alpha}=2^{|\alpha|+1}\left(1-2^{(|\alpha|-|2 \gamma|+1) m}\right) /\left(2^{|2 \gamma|}-\right.$ $\left.2^{|\alpha|+1}\right)$.

Replacing x, t by $2^{-m} x, 2^{-m} t$, respectively in (3.11) and multiplying 2^{m} in the result it follows from $|\gamma|>1$ that

$$
A_{m}(x, t):=2^{m} F\left(2^{-m} x, 2^{-m} t\right)
$$

is a Cauchy sequence which converges locally uniformly. Now let

$$
A(x, t)=\lim _{m \rightarrow \infty} A_{m}(x, t)
$$

Letting $n \rightarrow \infty$ in (3.11) we have

$$
\begin{equation*}
|F(x, t)-A(x, t)| \leq 2 \epsilon(2 \gamma)!\sum_{0 \leq \alpha \leq \gamma} a_{\alpha} \frac{t^{|\alpha|} x^{2 \gamma-2 \alpha}}{\alpha!(2 \gamma-2 \alpha)!} \tag{3.12}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}, t, s>0$, where $a_{\alpha}=2^{|\alpha|+1} /\left(2^{|2 \gamma|}-2^{|\alpha|+1}\right)$.
Replacing x, y, t, s by $2^{-m} x, 2^{-m} y, 2^{-m} t, 2^{-m} s$ in (3.10), respectively, multiplying 2^{m} and letting $m \rightarrow \infty$ it follows immediately from the fact $|\gamma|>1$ that

$$
\begin{equation*}
A(x+y, t+s)-A(x, t)-A(y, s)=0 \tag{3.13}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}, t, s>0$. To prove the uniqueness of $A(x, t)$, let $B(x, t)$ be another function satisfying (3.12) and (3.13). Then it follows from (3.12), (3.13) and the triangle inequality that for all $n \in \mathbb{N}$,

$$
\begin{align*}
|A(x, t)-B(x, t)| & \leq n\left|A\left(\frac{x}{n}, \frac{t}{n}\right)-B\left(\frac{x}{n}, \frac{t}{n}\right)\right| \tag{3.14}\\
& \leq 4 \epsilon(2 \gamma)!n^{1-|\gamma|} \sum_{0 \leq \alpha \leq \gamma} a_{\alpha} \frac{t^{|\alpha|} x^{2 \gamma-2 \alpha}}{\alpha!(2 \gamma-2 \alpha)!} \tag{3.15}
\end{align*}
$$

for all $x \in \mathbb{R}^{n}$, $t>0$. Letting $n \rightarrow \infty$, we have $A(x, t)=B(x, t)$ for all $x \in \mathbb{R}^{n}, t>0$. This proves the uniqueness.

Now it is well known that every continuous solution $A(x, t)$ of the Cauchy equation (3.13) has the form

$$
A(x, t)=a \cdot x+b t
$$

for some $a \in \mathbb{C}^{n}, b \in \mathbb{C}$. Thus we have

$$
\begin{equation*}
\left|f(x, t)-a \cdot x-b t-c_{2}-c_{3}\right| \leq 2 \epsilon(2 \gamma)!\sum_{0 \leq \alpha \leq \gamma} a_{\alpha} \frac{t^{|\alpha|} x^{2 \gamma-2 \alpha}}{\alpha!(2 \gamma-2 \alpha)!} \tag{3.16}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}, t>0$. Now it follows from $(3.8),(3.9),(3.16)$ and the triangle inequality that

$$
\begin{align*}
& \left|g(x, t)-a \cdot x-b t-c_{2}\right| \leq \epsilon(2 \gamma)!\sum_{0 \leq \alpha \leq \gamma} \frac{\left(1+2 a_{\alpha}\right) t^{|\alpha|} x^{2 \gamma-2 \alpha}}{\alpha!(2 \gamma-2 \alpha)!} \tag{3.17}\\
& \left|h(x, t)-a \cdot x-b t-c_{3}\right| \leq \epsilon(2 \gamma)!\sum_{0 \leq \alpha \leq \gamma} \frac{\left(1+2 a_{\alpha}\right) t^{|\alpha|} x^{2 \gamma-2 \alpha}}{\alpha!(2 \gamma-2 \alpha)!} \tag{3.18}
\end{align*}
$$

for all $x \in \mathbb{R}^{n}, t>0$, which gives the results for $|\gamma|>1$.
We now prove for $|\gamma|=1$. It follows from the inequality (3.10) and the continuity of F that

$$
U(x):=\limsup _{t \rightarrow 0^{+}} F(x, t)
$$

exists. From now on, we denote by

$$
\Phi(x, y, t, s):=2 \epsilon\left(H_{2 \gamma}(x, t)+H_{2 \gamma}(y, s)\right)
$$

In (3.10), letting $y=0$ and $t \rightarrow 0^{+}$so that $F(x, t) \rightarrow U(x)$ we have

$$
\begin{equation*}
|F(x, s)-U(x)-F(0, s)| \leq \Phi(x, 0,0, s) \tag{3.19}
\end{equation*}
$$

From the inequality (3.10) and (3.19) we have

$$
\begin{align*}
|U(x+y)-U(x)-U(y)| \leq & |F(x+y, t+s)-F(x, t)-F(y, s)| \tag{3.20}\\
& +|-F(x+y, t+s)+U(x+y)+F(0, t+s)| \\
& +|F(x, t)-U(x)-F(0, t)| \\
& +|F(y, s)-U(y)-F(0, s)| \\
& +|-F(0, t+s)+F(0, t)+F(0, s)| \\
\leq & \Phi(x, y, t, s)+\Phi(x+y, 0,0, t+s) \\
& +\Phi(x, 0,0, t)+\Phi(y, 0,0, s)+\Phi(0,0, t, s)
\end{align*}
$$

for all $x, y \in \mathbb{R}^{n}, t, s>0$. Since the left hand side of (3.20) is independent of t and s we have

$$
\begin{align*}
|U(x+y)-U(x)-U(y)| \leq & \Phi(x, y, 0,0)+\Phi(x+y, 0,0,0) \tag{3.21}\\
& +\Phi(x, 0,0,0)+\Phi(y, 0,0,0)+\Phi(0,0,0,0) \\
= & 2 \epsilon\left(2 x^{2 \gamma}+2 y^{2 \gamma}+(x+y)^{2 \gamma}\right)
\end{align*}
$$

for all $x, y \in \mathbb{R}^{n}$. Following the same approach as in $[9,10]$ we obtain that there exists a unique function $L: \mathbb{R}^{n} \rightarrow \mathbb{C}$ such that

$$
\begin{align*}
& L(x+y)-L(x)-L(y)=0 \tag{3.22}\\
& |U(x)-L(x)| \leq 8 \epsilon x^{2 \gamma} \tag{3.23}
\end{align*}
$$

for all $x, y \in \mathbb{R}^{n}$. Also $L(x)$ is given by

$$
\begin{equation*}
L(x)=\lim _{m \rightarrow \infty} 2^{m} U\left(2^{-m} x\right) \tag{3.24}
\end{equation*}
$$

locally uniformly. It follows from (3.24) and the continuity of $f(x, t)$ that L is continuous. Thus the solutions of (3.22) are given by $L(x)=a \cdot x$. From (3.19), (3.23) we have

$$
\begin{equation*}
\left|f(x, t)-a \cdot x-c_{2}-c_{3}\right| \leq 10 \epsilon x^{2 \gamma}+4 \epsilon t+|F(0, t)|:=10 \epsilon x^{2 \gamma}+r_{1}(t) \tag{3.25}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}, t>0$. Now from (3.8), (3.9) and (3.25) we have

$$
\begin{equation*}
\left|g(x, t)-a \cdot x-c_{2}\right| \leq 11 \epsilon x^{2 \gamma}+6 \epsilon t+|F(0, t)|:=11 \epsilon x^{2 \gamma}+r_{2}(t) \tag{3.26}
\end{equation*}
$$

$$
\begin{equation*}
\left|h(x, t)-a \cdot x-c_{3}\right| \leq 11 \epsilon x^{2 \gamma}+6 \epsilon t+|F(0, t)|:=11 \epsilon x^{2 \gamma}+r_{2}(t) \tag{3.27}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}, t>0$. Now it remain to show that $\lim _{t \rightarrow 0^{+}}|F(0, t)|=0$. Putting $x=y=0$ in (3.10) and using the triangle inequality we have

$$
\begin{equation*}
|F(0, t)| \leq|F(0, t+s)-F(0, s)|+4 \epsilon(t+s) \tag{3.28}
\end{equation*}
$$

for all $t, s>0$. By the continuity of F we have

$$
\limsup _{t \rightarrow 0^{+}}|F(0, t)| \leq 4 \epsilon s
$$

for all $s>0$, which implies that $\lim _{t \rightarrow 0^{+}}|F(0, t)|=0$. This completes the proof.

Now, for $p=1,2, \ldots$, we denote by

$$
\mathcal{H}_{2 p}(x, t)=\left[|\xi|^{2 p} * E_{t}(\xi)\right](x, t)
$$

Since $|x|^{2 p}=\sum_{|\gamma|=p} \frac{p!}{\gamma!} x^{2 \gamma}$ we have

$$
\mathcal{H}_{2 p}(x, t)=\sum_{|\gamma|=p} \frac{p!}{\gamma!} H_{2 \gamma}(x, t)
$$

Now, in view of the proof of Lemma 3.2 we also obtain the following.
Lemma 3.3. Let $f, g, h: \mathbb{R}^{n} \times(0, \infty) \rightarrow \mathbb{C}$ be continuous functions satisfying the inequality

$$
\begin{equation*}
|f(x+y, t+s)-g(x, t)-h(y, s)| \leq \epsilon\left(\mathcal{H}_{2 p}(x, t)+\mathcal{H}_{2 p}(y, s)\right) \tag{3.29}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}, t, s>0$. Then, for $p \geq 2$, there exist a unique $a \in \mathbb{C}^{n}$, a unique $b \in \mathbb{C}$ and complex constants c_{1}, c_{2} and c_{3} such that

$$
\begin{aligned}
& \left|f(x, t)-a \cdot x-b t-c_{1}\right| \leq \epsilon \sum_{|\gamma|=p} \frac{p!}{\gamma!} \psi_{1, \gamma}(x, t), \\
& \left|g(x, t)-a \cdot x-b t-c_{2}\right| \leq \epsilon \sum_{|\gamma|=p} \frac{p!}{\gamma!} \psi_{2, \gamma}(x, t) \\
& \left|h(x, t)-a \cdot x-b t-c_{3}\right| \leq \epsilon \sum_{|\gamma|=p} \frac{p!}{\gamma!} \psi_{2, \gamma}(x, t),
\end{aligned}
$$

where $\psi_{1, \gamma}, \psi_{2, \gamma}$ are given in Lemma 3.2 , and for $p=1$, there exist a unique $a \in \mathbb{C}^{n}, c_{1}, c_{2}, c_{3} \in \mathbb{C}$ and $s_{1}, s_{2}:(0, \infty) \rightarrow[0, \infty)$ with $s_{1}(t), s_{2}(t) \rightarrow 0$ as $t \rightarrow 0^{+}$such that

$$
\begin{aligned}
\left|f(x, t)-a \cdot x-c_{1}\right| & \leq 10 \epsilon|x|^{2}+s_{1}(t) \\
\left|g(x, t)-a \cdot x-c_{2}\right| & \leq 11 \epsilon|x|^{2}+s_{2}(t) \\
\left|h(x, t)-a \cdot x-c_{3}\right| & \leq 11 \epsilon|x|^{2}+s_{2}(t)
\end{aligned}
$$

for all $x \in \mathbb{R}^{n}, t>0$.

Theorem 3.4. Let $u, v, w \in \mathcal{S}^{\prime}$ satisfy the inequality

$$
\begin{equation*}
\left\|u \circ A-v \circ P_{1}-w \circ P_{2}\right\| \leq \epsilon\left(x^{2 \gamma}+y^{2 \gamma}\right) \tag{3.30}
\end{equation*}
$$

for some $|\gamma| \geq 1$. Then for $|\gamma| \geq 2$, there exist a unique $a \in \mathbb{C}^{n}$ and complex constants c_{1}, c_{2}, c_{3} such that

$$
\begin{aligned}
& \left\|u-a \cdot x-c_{1}\right\| \leq \frac{4 \epsilon}{4^{|\gamma|}-2} x^{2 \gamma} \\
& \left\|v-a \cdot x-c_{2}\right\| \leq \frac{\epsilon\left(4^{|\gamma|}+2\right)}{4^{|\gamma|}-2} x^{2 \gamma} \\
& \left\|w-a \cdot x-c_{2}\right\| \leq \frac{\epsilon\left(4^{|\gamma|}+2\right)}{4^{|\gamma|}-2} x^{2 \gamma}
\end{aligned}
$$

and for $|\gamma|=1$, there exist a unique $a \in \mathbb{C}^{n}$ and complex constants c_{1}, c_{2}, c_{3} such that

$$
\begin{aligned}
\left\|u-a \cdot x-c_{1}\right\| & \leq 10 \epsilon x^{2 \gamma} \\
\left\|v-a \cdot x-c_{2}\right\| & \leq 11 \epsilon x^{2 \gamma} \\
\left\|w-a \cdot x-c_{3}\right\| & \leq 11 \epsilon x^{2 \gamma}
\end{aligned}
$$

Proof. Convolving in each side of (3.30) the tensor product $E_{t}(x) E_{s}(y)$ of n-dimensional heat kernels we have in view of (2.3), (2.4), (2.5) and the semigroup property (3.3),

$$
\begin{aligned}
{\left[(u \circ A) *\left(E_{t}(\xi) E_{s}(\eta)\right)\right](x, y) } & =\left\langle u_{\xi}, \int E_{t}(x-\xi+\eta) E_{s}(y-\eta) d \eta\right\rangle \\
& =\left\langle u_{\xi},\left(E_{t} * E_{s}\right)(x+y-\xi)\right\rangle \\
& =\tilde{u}(x+y, t+s)
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
& {\left[\left(v \circ P_{1}\right) *\left(E_{t}(\xi) E_{s}(\eta)\right)\right](x, y)=\tilde{v}(x, t)} \\
& {\left[\left(w \circ P_{2}\right) *\left(E_{t}(\xi) E_{s}(\eta)\right)\right](x, y)=\tilde{w}(y, s)}
\end{aligned}
$$

where $\tilde{u}(x, t), \tilde{v}(x, t), \tilde{w}(x, t)$ are the Gauss transform of u, v, w, respectively.

Thus the inequality (3.30) is converted to the stability problem of quadratic-additive type functional equation:

$$
|\tilde{u}(x+y, t+s)-\tilde{v}(x, t)-\tilde{w}(y, s)| \leq \epsilon\left(H_{2 \gamma}(x, t)+H_{2 \gamma}(y, s)\right)
$$

for $x, y \in \mathbb{R}^{n}, t, s>0$.

By Lemma 3.2 for $|\gamma|>1$, there exist a unique $a \in \mathbb{C}^{n}$, a unique $b \in \mathbb{C}$ and complex constants c_{1}, c_{2} and c_{3} such that

$$
\begin{array}{r}
\left|\tilde{u}(x, t)-a \cdot x-b t-c_{1}\right| \leq \epsilon \psi_{1, \gamma}(x, t) \\
\left|\tilde{v}(x, t)-a \cdot x-b t-c_{2}\right| \leq \epsilon \psi_{2, \gamma}(x, t) \\
\left|\tilde{w}(x, t)-a \cdot x-b t-c_{3}\right| \leq \epsilon \psi_{2, \gamma}(x, t) \tag{3.33}
\end{array}
$$

Multiplying the test functions $\varphi \in \mathcal{S}$ in (3.31), (3.32) and (3.33), integrating the result and letting $t \rightarrow 0^{+}$we get the result for $|\gamma| \geq 2$.

Using Lemma 3.2 for $|\gamma|=1$, there exist a unique $a \in \mathbb{C}^{n}, c_{1}, c_{2}, c_{3} \in$ \mathbb{C} and $r_{1}, r_{2}:(0, \infty) \rightarrow[0, \infty)$ with $r_{1}(t), r_{2}(t) \rightarrow 0$ as $t \rightarrow 0^{+}$such that

$$
\begin{aligned}
\left|\tilde{u}(x, t)-a \cdot x-c_{1}\right| & \leq 10 \epsilon x^{2 \gamma}+r_{1}(t) \\
\left|\tilde{v}(x, t)-a \cdot x-c_{2}\right| & \leq 11 \epsilon x^{2 \gamma}+r_{2}(t) \\
\left|\tilde{w}(x, t)-a \cdot x-c_{3}\right| & \leq 11 \epsilon x^{2 \gamma}+r_{2}(t)
\end{aligned}
$$

for all $x \in \mathbb{R}^{n}, t>0$. Similarly as in the proof for $|\gamma|>1$, letting $t \rightarrow 0^{+}$ in the above inequalities we get the results for $|\gamma|=1$. This completes the proof.

Theorem 3.5. Let $u, v, w \in \mathcal{S}^{\prime}$ satisfy the inequality

$$
\begin{equation*}
\left\|u \circ A-v \circ P_{1}-w \circ P_{2}\right\| \leq \epsilon\left(|x|^{2 p}+|y|^{2 p}\right) \tag{3.34}
\end{equation*}
$$

for some integer $p \geq 1$. Then, for $p \geq 2$, there exist a unique $a \in \mathbb{C}^{n}$ and complex constants c_{1}, c_{2}, c_{3} such that

$$
\begin{aligned}
& \left\|u-a \cdot x-c_{1}\right\| \leq \frac{4 \epsilon}{4^{p}-2}|x|^{2 p} \\
& \left\|v-a \cdot x-c_{2}\right\| \leq \frac{\epsilon\left(4^{p}+2\right)}{4^{p}-2}|x|^{2 p} \\
& \left\|w-a \cdot x-c_{2}\right\| \leq \frac{\epsilon\left(4^{p}+2\right)}{4^{p}-2}|x|^{2 p}
\end{aligned}
$$

and for $p=1$, there exist a unique $a \in \mathbb{C}^{n}$ and complex constants c_{1}, c_{2}, c_{3} such that

$$
\begin{aligned}
\left\|u-a \cdot x-c_{1}\right\| & \leq 10 \epsilon|x|^{2} \\
\left\|v-a \cdot x-c_{2}\right\| & \leq 11 \epsilon|x|^{2} \\
\left\|w-a \cdot x-c_{3}\right\| & \leq 11 \epsilon|x|^{2}
\end{aligned}
$$

Proof. Convolving in each side of (3.34) the tensor product $E_{t}(x) E_{s}(y)$ of n-dimensional heat kernels as a function of x, y the inequality (3.34) is converted to the following inequality

$$
|\tilde{u}(x+y, t+s)-\tilde{v}(x, t)-\tilde{w}(y, s)| \leq \epsilon\left(\mathcal{H}_{2 p}(x, t)+\mathcal{H}_{2 p}(y, s)\right)
$$

for all $x, y \in \mathbb{R}^{n}, t, s>0$.
By Lemma 3.3 for $p \geq 2$, there exist a unique $a \in \mathbb{C}^{n}$, a unique $b \in \mathbb{C}$ and complex constants c_{1}, c_{2} and c_{3} such that

$$
\begin{align*}
& \left|\tilde{u}(x, t)-a \cdot x-b t-c_{1}\right| \leq \epsilon \sum_{|\gamma|=p} \frac{p!}{\gamma!} \psi_{1, \gamma}(x, t), \tag{3.35}\\
& \left|\tilde{v}(x, t)-a \cdot x-b t-c_{2}\right| \leq \epsilon \sum_{|\gamma|=p} \frac{p!}{\gamma!} \psi_{2, \gamma}(x, t), \tag{3.36}\\
& \left|\tilde{w}(x, t)-a \cdot x-b t-c_{3}\right| \leq \epsilon \sum_{|\gamma|=p} \frac{p!}{\gamma!} \psi_{2, \gamma}(x, t) . \tag{3.37}
\end{align*}
$$

Letting $t \rightarrow 0^{+}$in (3.35) ~ (3.37) we have

$$
\begin{aligned}
& \left\|u-a \cdot x-c_{1}\right\| \leq \sum_{|\gamma|=p} \frac{p!}{\gamma!}\left(\frac{4 \epsilon}{4^{|\gamma|}-2} x^{2 \gamma}\right)=\frac{4 \epsilon}{4^{p}-2}|x|^{2 p} \\
& \left\|v-a \cdot x-c_{2}\right\| \leq \sum_{|\gamma|=p} \frac{p!}{\gamma!}\left(\frac{\epsilon\left(4^{|\gamma|}+2\right)}{4^{|\gamma|}-2} x^{2 \gamma}\right)=\frac{\epsilon\left(4^{p}+2\right)}{4^{p}-2}|x|^{2 p} \\
& \left\|w-a \cdot x-c_{2}\right\| \leq \sum_{|\gamma|=p} \frac{p!}{\gamma!}\left(\frac{\epsilon\left(4^{|\gamma|}+2\right)}{4^{|\gamma|}-2} x^{2 \gamma}\right)=\frac{\epsilon\left(4^{p}+2\right)}{4^{p}-2}|x|^{2 p} .
\end{aligned}
$$

Finally, by Lemma 3.3 for $p=1$, there exist a unique $a \in \mathbb{C}^{n}, c_{1}, c_{2}, c_{3} \in$ \mathbb{C} and $s_{1}, s_{2}:(0, \infty) \rightarrow[0, \infty)$ with $s_{1}(t), s_{2}(t) \rightarrow 0$ as $t \rightarrow 0^{+}$such that

$$
\begin{align*}
\left|\tilde{u}(x, t)-a \cdot x-c_{1}\right| & \leq 10 \epsilon|x|^{2}+s_{1}(t) \tag{3.38}\\
\left|\tilde{v}(x, t)-a \cdot x-c_{2}\right| & \leq 11 \epsilon|x|^{2}+s_{2}(t) \tag{3.39}\\
\left|\tilde{w}(x, t)-a \cdot x-c_{3}\right| & \leq 11 \epsilon|x|^{2}+s_{2}(t) \tag{3.40}
\end{align*}
$$

for all $x \in \mathbb{R}^{n}, t>0$. Letting $t \rightarrow 0^{+}$in (3.38)~ (3.40) we have the result for $p=1$. This completes the proof.

4. Stability in \mathcal{D}^{\prime}

In this section, we prove that all the previous results hold for the case of distributions. It is well known that the following topological inclusions hold:

$$
C_{c}^{\infty} \hookrightarrow \mathcal{S}, \quad \mathcal{S}^{\prime} \hookrightarrow \mathcal{D}^{\prime}
$$

We denote by $\delta(x)$ the function on \mathbb{R}^{n},

$$
\delta(x)= \begin{cases}A \exp \left(-\frac{1}{\sqrt{1-|x|^{2}}}\right), & |x|<1 \\ 0, & |x| \geq 1\end{cases}
$$

where

$$
A=\left(\int_{|x|<1} \exp \left(-\frac{1}{\sqrt{1-|x|^{2}}}\right) d x\right)^{-1}
$$

It is easy to see that $\delta(x)$ an infinitely differentiable function with support $\{x:|x| \leq 1\}$. In the space of distributions the function $\delta_{t}(x):=t^{-n} \delta(x / t), t>0$, acts a similar role as the heat kernel $E_{t}(x)$ employed in the space of tempered distributions. To prove the previous results in the space of distributions it suffices to show the following.

Theorem 4.1. Let $u, v, w \in \mathcal{D}^{\prime}$ satisfy the inequality

$$
\begin{equation*}
\left\|u \circ A-v \circ P_{1}-w \circ P_{2}\right\| \leq \epsilon\left(|x|^{2 p}+|y|^{2 p}\right) \tag{4.1}
\end{equation*}
$$

for some integer $p \geq 1$. Then $u, v, w \in \mathcal{S}^{\prime}$.
Proof. We denote by

$$
\Psi(x, y, t, s)=\epsilon\left(|\xi|^{2 p} * \delta_{t}(\xi)\right)(x)+\epsilon\left(|\eta|^{2 p} * \delta_{s}(\eta)\right)(y)
$$

Convolving $\delta_{t}(x) \delta_{s}(y)$ in each side of (4.1) the inequality (4.1) is converted to the following stability problem

$$
\begin{equation*}
\left|\left(u * \delta_{t} * \delta_{s}\right)(x+y)-\left(v * \delta_{t}\right)(x)-\left(w * \delta_{s}\right)(y)\right| \leq \Psi(x, y, t, s) \tag{4.2}
\end{equation*}
$$

for $x, y \in \mathbb{R}^{n}, t, s>0$. From (4.2) it is easy to see that

$$
\begin{aligned}
& g(x):=\limsup _{t \rightarrow 0^{+}}\left(v * \delta_{t}\right)(x) \\
& h(x):=\limsup _{t \rightarrow 0^{+}}\left(w * \delta_{t}\right)(x)
\end{aligned}
$$

exist. In (4.2), letting $y=0$ and $s \rightarrow 0^{+}$so that $\left(w * \delta_{s}\right)(0) \rightarrow h(0)$ we have

$$
\begin{equation*}
\left|\left(u * \delta_{t}\right)(x)-\left(v * \delta_{t}\right)(x)-h(0)\right| \leq \Psi\left(x, 0, t, 0^{+}\right) \tag{4.3}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\left|\left(u * \delta_{s}\right)(y)-\left(w * \delta_{s}\right)(y)-g(0)\right| \leq \Psi\left(0, y, 0^{+}, s\right) . \tag{4.4}
\end{equation*}
$$

From (4.2), (4.3) and (4.4) we have

$$
\begin{align*}
\left|\left(u * \delta_{t} * \delta_{s}\right)(x+y)-\left(u * \delta_{t}\right)(x)-\left(u * \delta_{s}\right)(y)+g(0)+h(0)\right| & \leq \Psi(x, y, t, s) \tag{4.5}\\
& +\Psi\left(x, 0, t, 0^{+}\right) \\
& +\Psi\left(0, y, 0^{+}, s\right)
\end{align*}
$$

In (4.5), putting $y=0$ we have

$$
\begin{align*}
\left|\left(u * \delta_{t} * \delta_{s}\right)(x)-\left(u * \delta_{t}\right)(x)-\left(u * \delta_{s}\right)(0)+g(0)+h(0)\right| & \leq \Psi(x, 0, t, s) \tag{4.6}\\
& +\Psi\left(x, 0, t, 0^{+}\right) \\
& +\Psi\left(0,0,0^{+}, s\right) .
\end{align*}
$$

It follows from (4.6) that

$$
f(x):=\limsup _{t \rightarrow 0^{+}}\left(u * \delta_{t}\right)(x)
$$

exists. In (4.6), letting $t \rightarrow 0^{+}$so that $\left(u * \delta_{t}\right)(x) \rightarrow f(x)$ we have

$$
\begin{align*}
\left|\left(u * \delta_{s}\right)(x)-f(x)-\left(u * \delta_{s}\right)(0)+g(0)+h(0)\right| & \leq \Psi\left(x, 0,0^{+}, s\right) \tag{4.7}\\
& +\Psi\left(x, 0,0^{+}, 0^{+}\right) \\
& +\Psi\left(0,0,0^{+}, s\right) .
\end{align*}
$$

Letting $s \rightarrow 0^{+}$in (4.7) so that $\left(u * \delta_{s}\right)(0) \rightarrow f(0)$ we have

$$
\begin{equation*}
\|u-f(x)-f(0)+g(0)+h(0)\| \leq 2 \epsilon|x|^{2 p} \tag{4.8}
\end{equation*}
$$

On the other hand, let
$D(x, y, t, s)=\left(u * \delta_{t} * \delta_{s}\right)(x+y)-\left(u * \delta_{t}\right)(x)-\left(u * \delta_{s}\right)(y)+g(0)+h(0)$.

Then we have

$$
\begin{align*}
|f(x+y)-f(x)-f(y)+g(0)+h(0)| & \leq|D(x, y, t, s)|+\mid-D(x+y, 0, t, s) \tag{4.9}\\
& +\left|-D\left(x+y, 0,0^{+}, t\right)\right| \mid \\
& +\left|D\left(x, 0,0^{+}, t\right)\right|+\left|D\left(y, 0,0^{+}, s\right)\right| \\
\leq & \Psi(x, y, t, s)+\Psi\left(x, 0, t, 0^{+}\right)+\Psi\left(0, y, 0^{+}, s\right) \\
& +\Psi(x+y, 0, t, s)+\Psi\left(x+y, 0, t, 0^{+}\right) \\
& +\Psi\left(0,0,0^{+}, s\right)+\Psi\left(x+y, 0,0^{+}, t\right) \\
& +\Psi\left(x+y, 0,0^{+}, 0^{+}\right)+\Psi\left(0,0,0^{+}, t\right) \\
& +\Psi\left(x, 0,0^{+}, t\right)+\Psi\left(x, 0,0^{+}, 0^{+}\right) \\
& +\Psi\left(0,0,0^{+}, t\right)+\Psi\left(y, 0,0^{+}, s\right) \\
& +\Psi\left(y, 0,0^{+}, 0^{+}\right)+\Psi\left(0,0,0^{+}, s\right)
\end{align*}
$$

for all $x, y \in \mathbb{R}^{n}, t, s>0$. Letting $t, s \rightarrow 0^{+}$in the above inequality we have
(4.10) $|f(x+y)-f(x)-f(y)+g(0)+h(0)| \leq 4 \epsilon\left(|x|^{2 p}+|y|^{2 p}+|x+y|^{2 p}\right)$.

By the results in $[9,10]$, there exists a unique function A satisfying

$$
\begin{equation*}
A(x+y)=A(x)+A(y) \tag{4.11}
\end{equation*}
$$

such that

$$
\begin{equation*}
\mid f(x)-A(x)-g(0)-h(0))\left.\left|\leq \frac{4 \epsilon\left(4^{p}+2\right)}{4^{p}-2}\right| x\right|^{2 p} \tag{4.12}
\end{equation*}
$$

It is easy to see that A is a Lebesegue measurable function. Thus the solution A of the Cauchy functional equation (4.10) has the form $A(x)=$ $a \cdot x$ for some $a \in \mathbb{C}^{n}$. Now, from (4.8) and (4.11) we have

$$
\begin{equation*}
\|u-a \cdot x-f(0)\| \leq K|x|^{2 p} \tag{4.13}
\end{equation*}
$$

where $K=\frac{2 \epsilon\left(3 \cdot 4^{p}+2\right)}{4^{p}-2}$. It follows from (4.12) that u is a locally integrable function satisfying

$$
|u(x)| \leq|a \cdot x|+|f(0)|+K|x|^{2 p} .
$$

Thus $u \in \mathcal{S}^{\prime}$ and that $v, w \in \mathcal{S}^{\prime}$ in view of (4.3). This completes the proof.

As a consequence of the Theorem 3.5 and Theorem 4.1, we have the following.

Theorem 4.2. Let $u, v, w \in \mathcal{D}^{\prime}$ satisfy the inequality

$$
\begin{equation*}
\left\|u \circ A-v \circ P_{1}-w \circ P_{2}\right\| \leq \epsilon\left(|x|^{2 p}+|y|^{2 p}\right) \tag{4.14}
\end{equation*}
$$

for some integer $p \geq 1$. Then, for $p \geq 2$, there exist a unique $a \in \mathbb{C}^{n}$ and complex constants c_{1}, c_{2}, c_{3} such that

$$
\begin{aligned}
& \left\|u-a \cdot x-c_{1}\right\| \leq \frac{4 \epsilon}{4^{p}-2}|x|^{2 p} \\
& \left\|v-a \cdot x-c_{2}\right\| \leq \frac{\epsilon\left(4^{p}+2\right)}{4^{p}-2}|x|^{2 p} \\
& \left\|w-a \cdot x-c_{2}\right\| \leq \frac{\epsilon\left(4^{p}+2\right)}{4^{p}-2}|x|^{2 p}
\end{aligned}
$$

and for $p=1$, there exist a unique $a \in \mathbb{C}^{n}$ and complex constants c_{1}, c_{2}, c_{3} such that

$$
\begin{aligned}
\left\|u-a \cdot x-c_{1}\right\| & \leq 10 \epsilon|x|^{2} \\
\left\|v-a \cdot x-c_{2}\right\| & \leq 11 \epsilon|x|^{2} \\
\left\|w-a \cdot x-c_{3}\right\| & \leq 11 \epsilon|x|^{2}
\end{aligned}
$$

Since every locally integrable function $f(x)$ can be view as a distribution via the equation

$$
\langle f, \varphi\rangle=\int f(x) \varphi(x) d x
$$

we have the following stability theorem for locally integrable functions in almost everywhere sense.

Theorem 4.3. Let $\Omega_{1}, \Omega_{2} \subset \mathbb{R}^{n}$ such that $m\left(\mathbb{R}^{n} \backslash \Omega_{1}\right)=m\left(\mathbb{R}^{n} \backslash\right.$ $\left.\Omega_{2}\right)=0$ and let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{C}$ locally integrable functions satisfying the inequality

$$
\begin{equation*}
|f(x+y)-g(x)-h(y)| \leq \epsilon\left(|x|^{2 p}+|y|^{2 p}\right) \tag{4.15}
\end{equation*}
$$

for all $x \in \Omega_{1}, y \in \Omega_{2}$. Then there exist a unique $a \in \mathbb{C}^{n}$, complex constants c_{1}, c_{2}, c_{3} and $\Omega \subset \mathbb{R}^{n}$ with $m\left(\mathbb{R}^{n} \backslash \Omega\right)=0$ such that for $p \geq 2$,

$$
\begin{aligned}
& \left|f(x)-a \cdot x-c_{1}\right| \leq \frac{4 \epsilon}{4^{p}-2}|x|^{2 p} \\
& \left|g(x)-a \cdot x-c_{2}\right| \leq \frac{\epsilon\left(4^{p}+2\right)}{4^{p}-2}|x|^{2 p} \\
& \left|h(x)-a \cdot x-c_{2}\right| \leq \frac{\epsilon\left(4^{p}+2\right)}{4^{p}-2}|x|^{2 p}
\end{aligned}
$$

and for $p=1$,

$$
\begin{array}{r}
\left\|u-a \cdot x-c_{1}\right\| \leq 10 \epsilon|x|^{2} \\
\left\|v-a \cdot x-c_{2}\right\| \leq 11 \epsilon|x|^{2} \\
\left\|w-a \cdot x-c_{3}\right\| \leq 11 \epsilon|x|^{2}
\end{array}
$$

for all $x \in \Omega$.

References

[1] J. A. Baker, Distributional methods for functional equations, Aeq. Math. 62 (2001), 136-142.
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27(1984), 76-86.
[3] J. Chung, A distributional version of functional equations and their stabilities, Nonlinear Analysis 62(2005), 1037-1051.
[4] J. Chung, Hyers-Ulam-Rassias stability of Cauchy equation in the space of Schwartz distributions, J. Math. Anal. Appl. 300(2004), 343-350.
[5] J. Chung, Stability of functional equations in the space of distributions and hyperfunctions, J. Math. Anal. Appl. 286 (2003), 177-186.
[6] J. Chung, S.-Y. Chung and D. Kim, The stability of Cauchy equations in the space of Schwartz distributions, J. Math. Anal. Appl. 295(2004), 107-114.
[7] J. Chung, S.-Y. Chung and D. Kim, Une caractérisation de l'espace de Schwartz, C. R. Acad. Sci. Paris Sér. I Math. 316(1993), 23-25.
[8] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62(1992), 59-64.
[9] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14(1991), 431-434.
[10] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
[11] L. Hörmander, The analysis of linear partial differential operator I, SpringerVerlag, Berlin-New York, 1983.
[12] D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA 27(1941), 222-224.
[13] Y. H. Lee and K.W. Jun, A generalization of the Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 246(2000), 627-638.
[14] T. Matsuzawa, A calculus approach to hyperfunctions III, Nagoya Math. J. 118(1990), 133-153.
[15] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251(2000), 264-284.
[16] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
[17] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966.
[18] F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129.
[19] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley, New York, 1964.

Jaeyoung Chung
Department of Mathematics, Kunsan National University, Kunsan 573-701, Korea.
E-mail: jychung@kunsan.ac.kr

Jeongwook Chang
Department of Mathematics Education, Dankook University, Yongin 448-701, Korea.
E-mail: jchang@dankook.ac.kr

