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ON THE STABILITY OF THE PEXIDER EQUATION IN

SCHWARTZ DISTRIBUTIONS VIA HEAT KERNEL

Jaeyoung Chung and Jeongwook Chang∗

Abstract. We consider the Hyers-Ulam-Rassias stability problem

‖u ◦A− v ◦ P1 − w ◦ P2‖ ≤ ε(|x|p + |y|p)

for the Schwartz distributions u, v, w, which is a distributional ver-
sion of the Pexider generalization of the Hyers-Ulam-Rassias stabil-
ity problem

|f(x + y)− g(x)− h(y)| ≤ ε(|x|p + |y|p), x, y ∈ Rn,

for the functions f, g, h : Rn → C.

1. Introduction

Generalizing the well known stability theorem of D. H. Hyers[12]
which was motivated by S. M. Ulam[19], Th. M. Rassias[16] and Z.
Gajda[9] showed the following stability theorem for the Cauchy equation:

Theorem 1.1. [16, 9] Let f be a mapping from a normed linear
space V to a Banach space X satisfying the inequality

(1.1) ||f(x+ y)− f(x)− f(y)|| ≤ ε(‖x‖p + ‖y‖p), p 6= 1,

for all x, y ∈ V (x 6= 0 and y 6= 0 if p < 0). Then there exists a unique
function g : V → X satisfying

g(x+ y)− g(x)− g(y) = 0

such that

||f(x)− g(x)|| ≤ 2ε

|2p − 2|
‖x‖p

for all x ∈ V (x 6= 0 if p < 0).
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The result was further generalized by Y. H. Lee and K. W. Jun[13]
for the Hyers-Ulam-Rassias stability theorem for the Pexider equation:

Theorem 1.2. [13] Let f, g, h be mappings from a normed linear
space V to a Banach space X satisfying the inequality

(1.2) ||f(x+ y)− g(x)− h(y)|| ≤ ε(‖x‖p + ‖y‖p), p 6= 1,

for all x, y ∈ V \ {0}. Then there exists a unique function g : V → X
satisfying

g(x+ y)− g(x)− g(y) = 0

such that

||f(x)− g(x)|| ≤ 4ε(3 + 3p)

2p|3− 3p|
‖x‖p

for all x ∈ X \ {0}.

In this paper, we consider the above stability theorems in the spaces
of generalized functions such as the spaces S ′ and D′ of tempered distri-
butions and distributions of L. Schwartz for even integers p ≥ 2. Note
that the above inequalities (1.2) makes no sense if f is a tempered dis-
tributions or distribution. Making use of the pullbacks of generalized
function we extend the inequality (1.2) to distributions u, v, w as fol-
lows:

(1.3) ‖u ◦A− v ◦ P1 − w ◦ P2‖ ≤ ε(|x|p + |y|p)

where A(x, y) = x + y, P1(x, y) = x, P2(x, y) = y, x, y ∈ Rn, and
u ◦ A, v ◦ P1 and w ◦ P2 are the pullbacks of u, v, w by A,P1 and P2,
respectively. Also | · | denotes the Euclidean norm and the inequality
‖ · ‖ ≤ ψ(x, y) in (1.3) means that |〈·, ϕ〉| ≤ ‖ψϕ‖L1 for all test functions
ϕ(x, y) defined on R2n.

As the main result, we prove the following: Let u, v, w ∈ D′ satisfy
the inequality (1.3) for some even integer p ≥ 2. Then, for p > 2, there
exist a unique a ∈ Cn and complex constants c1, c2, c3 such that

‖u− a · x− c1‖ ≤
4ε

2p − 2
|x|p,

‖v − a · x− c2‖ ≤
ε(2p + 2)

2p − 2
|x|p,

‖w − a · x− c2‖ ≤
ε(2p + 2)

2p − 2
|x|p,
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and for p = 2, there exist a unique a ∈ Cn and complex constants
c1, c2, c3 such that

‖u− a · x− c1‖ ≤ 10ε|x|2,
‖v − a · x− c2‖ ≤ 11ε|x|2,
‖w − a · x− c3‖ ≤ 11ε|x|2.

2. Schwartz distributions

We briefly introduce the space D′(Rn) of distributions and the space
S ′(Rn) of tempered distributions. Here we use the multi-index nota-
tions, |α| = α1 + · · · + αn, α! = α1! · · ·αn!, xα = xα1

1 · · ·xαn
n and

∂α = ∂α1
1 · · · ∂αn

n , for x = (x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ Nn0 ,

where N0 is the set of non-negative integers and ∂j = ∂
∂xj

. We also

denote by C∞c (Rn) the set of all infinitely differentiable functions on Rn
with compact supports.

Definition 2.1. A distribution u is a linear form on C∞c (Rn) such
that for every compact set K ⊂ Rn there exist constants C > 0 and
k ∈ N0 such that

|〈u, ϕ〉| ≤ C
∑
|α|≤k

sup |∂αϕ|

for all ϕ ∈ C∞c (Rn) with supports contained in K. The set of all distri-
butions is denoted by D′(Rn).

Definition 2.2. We denote by S or S(Rn) the Schwartz space of all
infinitely differentiable functions ϕ in Rn such that

(2.1) ‖ϕ‖α,β = sup
x
|xα∂βϕ(x)| <∞

for all α, β ∈ Nn0 , equipped with the topology defined by the seminorms
‖ · ‖α,β. The elements of S are called rapidly decreasing functions and
the elements of the dual space S ′ are called tempered distributions.

We denote by Ωj open subsets of Rnj for j = 1, 2, with n1 ≥ n2.

Definition 2.3. Let uj ∈ D′(Ωj) and λ : Ω1 → Ω2 a smooth function
such that for each x ∈ Ω1 the derivative λ′(x) is surjective, that is,
the Jacobian matrix ∇λ of λ has rank n2. Then there exists a unique
continuous linear map λ∗ : D′(Ω2)→ D′(Ω1) such that Λ∗u = u◦λ when
u is a continuous function. We call λ∗u the pullback of u by λ and often
denoted by u ◦ λ.
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In particular if λ is a diffeomorphism (a bijection with λ, λ−1 smooth
functions) the pullback u ◦ λ can be written as follows:

(2.2) 〈u ◦ λ, ϕ〉 = 〈u, (ϕ ◦ λ−1)(x)|(∇λ−1(x)|〉.

As a matter of fact, the pullbacks u ◦A, u ◦P1, u ◦P2 can be written
in a transparent way as

〈u ◦A , ϕ(x, y)〉 = 〈u ,
∫
ϕ(x− y, y) dy〉,(2.3)

〈u ◦ P1 , ϕ(x, y)〉 = 〈u ,
∫
ϕ(x, y) dy〉,(2.4)

〈u ◦ P2 , ϕ(x, y)〉 = 〈u ,
∫
ϕ(x, y) dx〉(2.5)

for all test functions ϕ ∈ S(R2n).
For more details of distributions we refer the reader to [11, 17].

3. Stability in S ′

We consider the inequality (1.3) in the space S ′ of Schwartz tempered
distributions. We employ the n-dimensional heat kernel Et(x) given by

(3.1) Et(x) = (4πt)−n/2 exp(−|x|2/4t), x ∈ Rn, t > 0.

It is easy to see that the heat kernel Et(·) belongs to the Schwartz
space S(Rn) for each t > 0. Let u ∈ S ′. Then its Gauss transform

ũ(x, t) = (u ∗ Et)(x) = 〈uy, Et(x− y)〉, x ∈ Rn, t > 0,

is well defined. As a matter of fact the following result holds[10]:

Lemma 3.1. [14] Let u ∈ S ′(Rn). Then its Gauss transform ũ(x, t)
is a C∞–solution of the heat equation satisfying:

(i) There exist positive constants C, M , N and δ such that

(3.2) |ũ(x, t)| ≤ Ct−M (1 + |x|)N in Rn × (0, δ),

(ii) ũ(x, t)→ u as t→ 0+ in the sense that for every ϕ ∈ S,

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x) dx.

Conversely, every C∞–solution U(x, t) of the heat equation satisfying
the estimate (3.2) can be uniquely expressed as U(x, t) = ũ(x, t) for
some u ∈ S ′.
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We refer the reader to ([11], chapter VI) for pullbacks of distributions
and to [10, 13] for more details of distributions and tempered distribu-
tions.

It is well known that the weak semigroup property of the heat kernel

(3.3) (Et ∗ Es)(x) = Et+s(x)

holds for convolution. This semigroup property will be very useful later.
Throughout the paper, we denote by H2γ the heat polynomial of

degree 2γ ∈ Nn0 which is given by

(3.4) H2γ(x, t) = [ξ2γ ∗ Et(ξ)](x) = (2γ)!
∑

0≤α≤γ

t|α|x2γ−2α

α!(2γ − 2α)!
.

Note that if |γ| = 1 we have

H2γ(x, t) = x2γ + 2t = x2j + 2t

where j -th coordinate of γ equals 1, and for |γ| = 1, 2, . . .

H2γ(x, 0) = x2γ , H2γ(0, t) =
(2γ)!t|γ|

γ!
.

We first prove the following stability theorem.

Lemma 3.2. Let f , g, h : Rn × (0,∞)→ C be continuous functions
satisfying the inequality

(3.5) |f(x+ y, t+ s)− g(x, t)− h(y, s)| ≤ ε(H2γ(x, t) +H2γ(y, s))

for all x, y ∈ Rn, t, s > 0 and |γ| ≥ 1. Then, for |γ| > 1, there exist a
unique a ∈ Cn, a unique b ∈ C and complex constants c1, c2 and c3 such
that

|f(x, t)− a · x− bt− c1| ≤ εψ1,γ(x, t),

|g(x, t)− a · x− bt− c2| ≤ εψ2,γ(x, t),

|h(x, t)− a · x− bt− c3| ≤ εψ2,γ(x, t),

for all x ∈ Rn, t > 0, where

ψ1,γ(x, t) = (2γ)!
∑

0≤α≤γ

2|α|+2t|α|x2γ−2α

(2|2γ| − 2|α|+1)α!(2γ − 2α)!
,

ψ2,γ(x, t) = (2γ)!
∑

0≤α≤γ

(2|2γ| + 2|α|+1)t|α|x2γ−2α

(2|2γ| − 2|α|+1)α!(2γ − 2α)!
,
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and for |γ| = 1, there exist a unique a ∈ Cn, c1, c2, c3 ∈ C and r1, r2 :
(0,∞)→ [0,∞) with r1(t), r2(t)→ 0 as t→ 0+ such that

|f(x, t)− a · x− c1| ≤ 10εx2γ + r1(t),

|g(x, t)− a · x− c2| ≤ 11εx2γ + r2(t),

|h(x, t)− a · x− c3| ≤ 11εx2γ + r2(t),

for all x ∈ Rn, t > 0.

Proof. Let x = y = 0 in (3.5). Then by the triangle inequality we
have

|g(0, t)| ≤ ε(2γ)!

γ!

(
t|γ| + s|γ|

)
+ |f(0, t+ s)− h(0, s)|,(3.6)

|h(0, s)| ≤ ε(2γ)!

γ!

(
t|γ| + s|γ|

)
+ |f(0, t+ s)− g(0, t)|,(3.7)

for all t, s > 0. Thus it follows from (3.6), (3.7) and the continuity of f

c2 := lim sup
t→0+

g(0, t), c3 := lim sup
s→0+

h(0, s)

exist. Choose a sequence sn, n = 1, 2, . . . , of positive numbers which
tends to 0 as n → ∞ such that h(0, sn) → c3 as n → ∞. Putting
y = 0, s = sn and letting n→∞ we have

(3.8) |f(x, t)− g(x, t)− c3| ≤ εH2γ(x, t)

for all x ∈ Rn, t > 0. Similarly we have

(3.9) |f(y, s)− h(y, s)− c2| ≤ εH2γ(y, s)

for all y ∈ Rn, s > 0. From (3.5), (3.8), (3.9) and the triangle inequality
we have

(3.10) |F (x+ y, t+ s)− F (x, t)− F (y, s)| ≤ 2ε(H2γ(x, t) +H2γ(y, s))

for all x, y ∈ Rn, t, s > 0, where F (x, t) = f(x, t)− c2 − c3.
We first prove for |γ| > 1. For this case, we can follow the same

approach as in [16, 9]. Indeed, replacing both x and y by x
2 , both t and

s by t
2 in (3.10) we have

|F (x, t)− 2F (2−1x, 2−1t)| ≤ 4εH2γ(2−1x, 2−1t)



On the stability of the Pexider equation in Schwartz Distributions 473

for all x ∈ Rn, t > 0. Making use of the induction argument and triangle
inequality we have

|F (x, t)− 2mF (2−mx, 2−mt)| ≤2ε
m∑
j=1

2jH2γ(2−jx, 2−jt)(3.11)

≤2ε (2γ)!
∑

0≤α≤γ
am,α

t|α|x2γ−2α

α!(2γ − 2α)!

for all n ∈ N, x ∈ Rn, t > 0, where am,α = 2|α|+1(1−2(|α|−|2γ|+1)m)/(2|2γ|−
2|α|+1).

Replacing x, t by 2−mx, 2−mt, respectively in (3.11) and multiplying
2m in the result it follows from |γ| > 1 that

Am(x, t) := 2mF (2−mx, 2−mt)

is a Cauchy sequence which converges locally uniformly. Now let

A(x, t) = lim
m→∞

Am(x, t).

Letting n→∞ in (3.11) we have

(3.12) |F (x, t)−A(x, t)| ≤ 2ε (2γ)!
∑

0≤α≤γ
aα

t|α|x2γ−2α

α!(2γ − 2α)!

for all x, y ∈ Rn, t, s > 0, where aα = 2|α|+1/(2|2γ| − 2|α|+1).
Replacing x, y, t, s by 2−mx, 2−my, 2−mt, 2−ms in (3.10), respec-

tively, multiplying 2m and letting m → ∞ it follows immediately from
the fact |γ| > 1 that

A(x+ y, t+ s)−A(x, t)−A(y, s) = 0(3.13)

for all x, y ∈ Rn, t, s > 0. To prove the uniqueness of A(x, t), let B(x, t)
be another function satisfying (3.12) and (3.13). Then it follows from
(3.12), (3.13) and the triangle inequality that for all n ∈ N,

|A(x, t)−B(x, t)| ≤ n|A
(
x

n
,
t

n

)
−B

(
x

n
,
t

n

)
|(3.14)

≤ 4ε (2γ)!n1−|γ|
∑

0≤α≤γ
aα

t|α|x2γ−2α

α!(2γ − 2α)!
.(3.15)

for all x ∈ Rn, t > 0. Letting n → ∞, we have A(x, t) = B(x, t) for all
x ∈ Rn, t > 0. This proves the uniqueness.
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Now it is well known that every continuous solution A(x, t) of the
Cauchy equation (3.13) has the form

A(x, t) = a · x+ bt

for some a ∈ Cn, b ∈ C. Thus we have

(3.16) |f(x, t)− a · x− bt− c2 − c3| ≤ 2ε (2γ)!
∑

0≤α≤γ
aα

t|α|x2γ−2α

α!(2γ − 2α)!

for all x ∈ Rn, t > 0. Now it follows from (3.8),(3.9), (3.16) and the
triangle inequality that

|g(x, t)− a · x− bt− c2| ≤ ε(2γ)!
∑

0≤α≤γ

(1 + 2aα)t|α|x2γ−2α

α!(2γ − 2α)!
(3.17)

|h(x, t)− a · x− bt− c3| ≤ ε(2γ)!
∑

0≤α≤γ

(1 + 2aα)t|α|x2γ−2α

α!(2γ − 2α)!
.(3.18)

for all x ∈ Rn, t > 0, which gives the results for |γ| > 1.

We now prove for |γ| = 1. It follows from the inequality (3.10) and
the continuity of F that

U(x) := lim sup
t→0+

F (x, t)

exists. From now on, we denote by

Φ(x, y, t, s) := 2ε(H2γ(x, t) +H2γ(y, s)).

In (3.10), letting y = 0 and t→ 0+ so that F (x, t)→ U(x) we have

(3.19) |F (x, s)− U(x)− F (0, s)| ≤ Φ(x, 0, 0, s).

From the inequality (3.10) and (3.19) we have

|U(x+ y)− U(x)− U(y)| ≤|F (x+ y, t+ s)− F (x, t)− F (y, s)|
(3.20)

+ | − F (x+ y, t+ s) + U(x+ y) + F (0, t+ s)|
+ |F (x, t)− U(x)− F (0, t)|
+ |F (y, s)− U(y)− F (0, s)|
+ | − F (0, t+ s) + F (0, t) + F (0, s)|

≤Φ(x, y, t, s) + Φ(x+ y, 0, 0, t+ s)

+ Φ(x, 0, 0, t) + Φ(y, 0, 0, s) + Φ(0, 0, t, s)
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for all x, y ∈ Rn, t, s > 0. Since the left hand side of (3.20) is indepen-
dent of t and s we have

|U(x+ y)− U(x)− U(y)| ≤Φ(x, y, 0, 0) + Φ(x+ y, 0, 0, 0)

(3.21)

+ Φ(x, 0, 0, 0) + Φ(y, 0, 0, 0) + Φ(0, 0, 0, 0)

=2ε(2x2γ + 2y2γ + (x+ y)2γ)

for all x, y ∈ Rn. Following the same approach as in [9, 10] we obtain
that there exists a unique function L : Rn → C such that

L(x+ y)− L(x)− L(y) = 0,(3.22)

|U(x)− L(x)| ≤ 8εx2γ(3.23)

for all x, y ∈ Rn. Also L(x) is given by

(3.24) L(x) = lim
m→∞

2mU(2−mx)

locally uniformly. It follows from (3.24) and the continuity of f(x, t) that
L is continuous. Thus the solutions of (3.22) are given by L(x) = a · x.
From (3.19), (3.23) we have

|f(x, t)− a · x− c2 − c3| ≤ 10εx2γ + 4εt+ |F (0, t)| := 10εx2γ + r1(t)

(3.25)

for all x ∈ Rn, t > 0. Now from (3.8), (3.9) and (3.25) we have

|g(x, t)− a · x− c2| ≤ 11εx2γ + 6εt+ |F (0, t)| := 11εx2γ + r2(t),

(3.26)

|h(x, t)− a · x− c3| ≤ 11εx2γ + 6εt+ |F (0, t)| := 11εx2γ + r2(t)

(3.27)

for all x ∈ Rn, t > 0. Now it remain to show that limt→0+ |F (0, t)| = 0.
Putting x = y = 0 in (3.10) and using the triangle inequality we have

|F (0, t)| ≤ |F (0, t+ s)− F (0, s)|+ 4ε(t+ s)(3.28)

for all t, s > 0. By the continuity of F we have

lim sup
t→0+

|F (0, t)| ≤ 4εs

for all s > 0, which implies that limt→0+ |F (0, t)| = 0. This completes
the proof.

Now, for p = 1, 2, . . ., we denote by

H2p(x, t) = [|ξ|2p ∗ Et(ξ)](x, t).
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Since |x|2p =
∑
|γ|=p

p!
γ!x

2γ we have

H2p(x, t) =
∑
|γ|=p

p!

γ!
H2γ(x, t).

Now, in view of the proof of Lemma 3.2 we also obtain the following.

Lemma 3.3. Let f , g, h : Rn × (0,∞)→ C be continuous functions
satisfying the inequality

(3.29) |f(x+ y, t+ s)− g(x, t)− h(y, s)| ≤ ε(H2p(x, t) +H2p(y, s))

for all x, y ∈ Rn, t, s > 0. Then, for p ≥ 2, there exist a unique a ∈ Cn,
a unique b ∈ C and complex constants c1, c2 and c3 such that

|f(x, t)− a · x− bt− c1| ≤ ε
∑
|γ|=p

p!

γ!
ψ1,γ(x, t),

|g(x, t)− a · x− bt− c2| ≤ ε
∑
|γ|=p

p!

γ!
ψ2,γ(x, t),

|h(x, t)− a · x− bt− c3| ≤ ε
∑
|γ|=p

p!

γ!
ψ2,γ(x, t),

where ψ1,γ , ψ2,γ are given in Lemma 3.2, and for p = 1, there exist
a unique a ∈ Cn, c1, c2, c3 ∈ C and s1, s2 : (0,∞) → [0,∞) with
s1(t), s2(t)→ 0 as t→ 0+ such that

|f(x, t)− a · x− c1| ≤ 10ε|x|2 + s1(t),

|g(x, t)− a · x− c2| ≤ 11ε|x|2 + s2(t),

|h(x, t)− a · x− c3| ≤ 11ε|x|2 + s2(t),

for all x ∈ Rn, t > 0.

Theorem 3.4. Let u, v, w ∈ S ′ satisfy the inequality

(3.30) ‖u ◦A− v ◦ P1 − w ◦ P2‖ ≤ ε(x2γ + y2γ)
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for some |γ| ≥ 1. Then for |γ| ≥ 2, there exist a unique a ∈ Cn and
complex constants c1, c2, c3 such that

‖u− a · x− c1‖ ≤
4ε

4|γ| − 2
x2γ ,

‖v − a · x− c2‖ ≤
ε(4|γ| + 2)

4|γ| − 2
x2γ ,

‖w − a · x− c2‖ ≤
ε(4|γ| + 2)

4|γ| − 2
x2γ ,

and for |γ| = 1, there exist a unique a ∈ Cn and complex constants
c1, c2, c3 such that

‖u− a · x− c1‖ ≤ 10εx2γ ,

‖v − a · x− c2‖ ≤ 11εx2γ ,

‖w − a · x− c3‖ ≤ 11εx2γ .

Proof. Convolving in each side of (3.30) the tensor product Et(x)Es(y)
of n-dimensional heat kernels we have in view of (2.3), (2.4), (2.5) and
the semigroup property (3.3),

[(u ◦A) ∗ (Et(ξ)Es(η))](x, y) = 〈uξ,
∫
Et(x− ξ + η)Es(y − η) dη〉

= 〈uξ, (Et ∗ Es)(x+ y − ξ)〉
= ũ(x+ y, t+ s).

Similarly we have

[(v ◦ P1) ∗ (Et(ξ)Es(η))](x, y) = ṽ(x, t),

[(w ◦ P2) ∗ (Et(ξ)Es(η))](x, y) = w̃(y, s),

where ũ(x, t), ṽ(x, t), w̃(x, t) are the Gauss transform of u, v, w, respec-
tively.

Thus the inequality (3.30) is converted to the stability problem of
quadratic–additive type functional equation:

|ũ(x+ y, t+ s)− ṽ(x, t)− w̃(y, s)| ≤ ε(H2γ(x, t) +H2γ(y, s))

for x, y ∈ Rn, t, s > 0.
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By Lemma 3.2 for |γ| > 1, there exist a unique a ∈ Cn, a unique
b ∈ C and complex constants c1, c2 and c3 such that

|ũ(x, t)− a · x− bt− c1| ≤ εψ1,γ(x, t),(3.31)

|ṽ(x, t)− a · x− bt− c2| ≤ εψ2,γ(x, t),(3.32)

|w̃(x, t)− a · x− bt− c3| ≤ εψ2,γ(x, t).(3.33)

Multiplying the test functions ϕ ∈ S in (3.31), (3.32) and (3.33), inte-
grating the result and letting t→ 0+ we get the result for |γ| ≥ 2.

Using Lemma 3.2 for |γ| = 1, there exist a unique a ∈ Cn, c1, c2, c3 ∈
C and r1, r2 : (0,∞)→ [0,∞) with r1(t), r2(t)→ 0 as t→ 0+ such that

|ũ(x, t)− a · x− c1| ≤ 10εx2γ + r1(t),

|ṽ(x, t)− a · x− c2| ≤ 11εx2γ + r2(t),

|w̃(x, t)− a · x− c3| ≤ 11εx2γ + r2(t),

for all x ∈ Rn, t > 0. Similarly as in the proof for |γ| > 1, letting t→ 0+

in the above inequalities we get the results for |γ| = 1. This completes
the proof.

Theorem 3.5. Let u, v, w ∈ S ′ satisfy the inequality

(3.34) ‖u ◦A− v ◦ P1 − w ◦ P2‖ ≤ ε(|x|2p + |y|2p)

for some integer p ≥ 1. Then, for p ≥ 2, there exist a unique a ∈ Cn
and complex constants c1, c2, c3 such that

‖u− a · x− c1‖ ≤
4ε

4p − 2
|x|2p,

‖v − a · x− c2‖ ≤
ε(4p + 2)

4p − 2
|x|2p,

‖w − a · x− c2‖ ≤
ε(4p + 2)

4p − 2
|x|2p,

and for p = 1, there exist a unique a ∈ Cn and complex constants
c1, c2, c3 such that

‖u− a · x− c1‖ ≤ 10ε|x|2,
‖v − a · x− c2‖ ≤ 11ε|x|2,
‖w − a · x− c3‖ ≤ 11ε|x|2.
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Proof. Convolving in each side of (3.34) the tensor product Et(x)Es(y)
of n-dimensional heat kernels as a function of x, y the inequality (3.34)
is converted to the following inequality

|ũ(x+ y, t+ s)− ṽ(x, t)− w̃(y, s)| ≤ ε(H2p(x, t) +H2p(y, s))

for all x, y ∈ Rn, t, s > 0.

By Lemma 3.3 for p ≥ 2, there exist a unique a ∈ Cn, a unique b ∈ C
and complex constants c1, c2 and c3 such that

|ũ(x, t)− a · x− bt− c1| ≤ ε
∑
|γ|=p

p!

γ!
ψ1,γ(x, t),(3.35)

|ṽ(x, t)− a · x− bt− c2| ≤ ε
∑
|γ|=p

p!

γ!
ψ2,γ(x, t),(3.36)

|w̃(x, t)− a · x− bt− c3| ≤ ε
∑
|γ|=p

p!

γ!
ψ2,γ(x, t).(3.37)

Letting t→ 0+ in (3.35)∼ (3.37) we have

‖u− a · x− c1‖ ≤
∑
|γ|=p

p!

γ!

(
4ε

4|γ| − 2
x2γ
)

=
4ε

4p − 2
|x|2p,

‖v − a · x− c2‖ ≤
∑
|γ|=p

p!

γ!

(
ε(4|γ| + 2)

4|γ| − 2
x2γ

)
=
ε(4p + 2)

4p − 2
|x|2p,

‖w − a · x− c2‖ ≤
∑
|γ|=p

p!

γ!

(
ε(4|γ| + 2)

4|γ| − 2
x2γ

)
=
ε(4p + 2)

4p − 2
|x|2p.

Finally, by Lemma 3.3 for p = 1, there exist a unique a ∈ Cn, c1, c2, c3 ∈
C and s1, s2 : (0,∞)→ [0,∞) with s1(t), s2(t)→ 0 as t→ 0+ such that

|ũ(x, t)− a · x− c1| ≤ 10ε|x|2 + s1(t),(3.38)

|ṽ(x, t)− a · x− c2| ≤ 11ε|x|2 + s2(t),(3.39)

|w̃(x, t)− a · x− c3| ≤ 11ε|x|2 + s2(t),(3.40)

for all x ∈ Rn, t > 0. Letting t → 0+ in (3.38)∼ (3.40) we have the
result for p = 1. This completes the proof.
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4. Stability in D′

In this section, we prove that all the previous results hold for the
case of distributions. It is well known that the following topological
inclusions hold:

C∞c ↪→ S, S ′ ↪→ D′.
We denote by δ(x) the function on Rn,

δ(x) =

A exp

(
− 1√

1−|x|2

)
, |x| < 1

0, |x| ≥ 1,

where

A =

(∫
|x|<1

exp

(
− 1√

1− |x|2

)
dx

)−1
.

It is easy to see that δ(x) an infinitely differentiable function with
support {x : |x| ≤ 1}. In the space of distributions the function
δt(x) := t−nδ(x/t), t > 0, acts a similar role as the heat kernel Et(x)
employed in the space of tempered distributions. To prove the previous
results in the space of distributions it suffices to show the following.

Theorem 4.1. Let u, v, w ∈ D′ satisfy the inequality

(4.1) ‖u ◦A− v ◦ P1 − w ◦ P2‖ ≤ ε(|x|2p + |y|2p)
for some integer p ≥ 1. Then u, v, w ∈ S ′.

Proof. We denote by

Ψ(x, y, t, s) = ε(|ξ|2p ∗ δt(ξ))(x) + ε(|η|2p ∗ δs(η))(y).

Convolving δt(x)δs(y) in each side of (4.1) the inequality (4.1) is con-
verted to the following stability problem

(4.2) |(u ∗ δt ∗ δs)(x+ y)− (v ∗ δt)(x)− (w ∗ δs)(y)| ≤ Ψ(x, y, t, s)

for x, y ∈ Rn, t, s > 0. From (4.2) it is easy to see that

g(x) := lim sup
t→0+

(v ∗ δt)(x),

h(x) := lim sup
t→0+

(w ∗ δt)(x)

exist. In (4.2), letting y = 0 and s → 0+ so that (w ∗ δs)(0) → h(0) we
have

(4.3) |(u ∗ δt)(x)− (v ∗ δt)(x)− h(0)| ≤ Ψ(x, 0, t, 0+).
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Similarly we have

(4.4) |(u ∗ δs)(y)− (w ∗ δs)(y)− g(0)| ≤ Ψ(0, y, 0+, s).

From (4.2), (4.3) and (4.4) we have

|(u ∗ δt ∗ δs)(x+ y)− (u ∗ δt)(x)− (u ∗ δs)(y) + g(0) + h(0)| ≤ Ψ(x, y, t, s)

(4.5)

+ Ψ(x, 0, t, 0+)

+ Ψ(0, y, 0+, s).

In (4.5), putting y = 0 we have

|(u ∗ δt ∗ δs)(x)− (u ∗ δt)(x)− (u ∗ δs)(0) + g(0) + h(0)| ≤ Ψ(x, 0, t, s)

(4.6)

+ Ψ(x, 0, t, 0+)

+ Ψ(0, 0, 0+, s).

It follows from (4.6) that

f(x) := lim sup
t→0+

(u ∗ δt)(x)

exists. In (4.6), letting t→ 0+ so that (u ∗ δt)(x)→ f(x) we have

|(u ∗ δs)(x)− f(x)− (u ∗ δs)(0) + g(0) + h(0)| ≤Ψ(x, 0, 0+, s)(4.7)

+Ψ(x, 0, 0+, 0+)

+Ψ(0, 0, 0+, s).

Letting s→ 0+ in (4.7) so that (u ∗ δs)(0)→ f(0) we have

(4.8) ‖u− f(x)− f(0) + g(0) + h(0)‖ ≤ 2ε|x|2p

On the other hand, let

D(x, y, t, s) = (u ∗ δt ∗ δs)(x+ y)− (u ∗ δt)(x)− (u ∗ δs)(y) + g(0) + h(0).
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Then we have

|f(x+ y)− f(x)− f(y) + g(0) + h(0)| ≤ |D(x, y, t, s)|+ | −D(x+ y, 0, t, s)

(4.9)

+ | −D(x+ y, 0, 0+, t)||
+ |D(x, 0, 0+, t)|+ |D(y, 0, 0+, s)|
≤Ψ(x, y, t, s) + Ψ(x, 0, t, 0+) + Ψ(0, y, 0+, s)

+ Ψ(x+ y, 0, t, s) + Ψ(x+ y, 0, t, 0+)

+ Ψ(0, 0, 0+, s) + Ψ(x+ y, 0, 0+, t)

+ Ψ(x+ y, 0, 0+, 0+) + Ψ(0, 0, 0+, t)

+ Ψ(x, 0, 0+, t) + Ψ(x, 0, 0+, 0+)

+ Ψ(0, 0, 0+, t) + Ψ(y, 0, 0+, s)

+ Ψ(y, 0, 0+, 0+) + Ψ(0, 0, 0+, s)

for all x, y ∈ Rn, t, s > 0. Letting t, s→ 0+ in the above inequality we
have

(4.10) |f(x+y)−f(x)−f(y)+g(0)+h(0)| ≤ 4ε(|x|2p+|y|2p+|x+y|2p).

By the results in [9, 10], there exists a unique function A satisfying

A(x+ y) = A(x) +A(y)(4.11)

such that

|f(x)−A(x)− g(0)− h(0))| ≤ 4ε(4p + 2)

4p − 2
|x|2p.(4.12)

It is easy to see that A is a Lebesegue measurable function. Thus the
solution A of the Cauchy functional equation (4.10) has the form A(x) =
a · x for some a ∈ Cn. Now, from (4.8) and (4.11) we have

(4.13) ‖u− a · x− f(0)‖ ≤ K|x|2p

where K = 2ε(3·4p+2)
4p−2 . It follows from (4.12) that u is a locally integrable

function satisfying

|u(x)| ≤ |a · x|+ |f(0)|+K|x|2p.

Thus u ∈ S ′ and that v, w ∈ S ′ in view of (4.3). This completes the
proof.

As a consequence of the Theorem 3.5 and Theorem 4.1, we have the
following.
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Theorem 4.2. Let u, v, w ∈ D′ satisfy the inequality

(4.14) ‖u ◦A− v ◦ P1 − w ◦ P2‖ ≤ ε(|x|2p + |y|2p)

for some integer p ≥ 1. Then, for p ≥ 2, there exist a unique a ∈ Cn
and complex constants c1, c2, c3 such that

‖u− a · x− c1‖ ≤
4ε

4p − 2
|x|2p,

‖v − a · x− c2‖ ≤
ε(4p + 2)

4p − 2
|x|2p,

‖w − a · x− c2‖ ≤
ε(4p + 2)

4p − 2
|x|2p,

and for p = 1, there exist a unique a ∈ Cn and complex constants
c1, c2, c3 such that

‖u− a · x− c1‖ ≤ 10ε|x|2,
‖v − a · x− c2‖ ≤ 11ε|x|2,
‖w − a · x− c3‖ ≤ 11ε|x|2.

Since every locally integrable function f(x) can be view as a distri-
bution via the equation

〈f, ϕ〉 =

∫
f(x)ϕ(x)dx,

we have the following stability theorem for locally integrable functions
in almost everywhere sense.

Theorem 4.3. Let Ω1, Ω2 ⊂ Rn such that m(Rn \ Ω1) = m(Rn \
Ω2) = 0 and let f, g, h : Rn → C locally integrable functions satisfying
the inequality

(4.15) |f(x+ y)− g(x)− h(y)| ≤ ε(|x|2p + |y|2p)

for all x ∈ Ω1, y ∈ Ω2. Then there exist a unique a ∈ Cn, complex
constants c1, c2, c3 and Ω ⊂ Rn with m(Rn \Ω) = 0 such that for p ≥ 2,

|f(x)− a · x− c1| ≤
4ε

4p − 2
|x|2p,

|g(x)− a · x− c2| ≤
ε(4p + 2)

4p − 2
|x|2p,

|h(x)− a · x− c2| ≤
ε(4p + 2)

4p − 2
|x|2p,
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and for p = 1,

‖u− a · x− c1‖ ≤ 10ε|x|2,
‖v − a · x− c2‖ ≤ 11ε|x|2,
‖w − a · x− c3‖ ≤ 11ε|x|2,

for all x ∈ Ω.
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