• Title/Summary/Keyword: Petroleum products

Search Result 206, Processing Time 0.021 seconds

Solubilization of Sulfur Compounds in the Diesel Oil by Nonionic Surfactants (비이온 계면활성제를 이용한 디이젤유의 황화합물 가용화에 관한 연구)

  • Lee, Suk-Kyu;Han, Ji-Won;Kim, Byung-Hong;Shin, Pyung-Gyun;Park, Sang-Kwon;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.537-542
    • /
    • 1999
  • Removal of sulfur compounds in the petroleum products is essential for the prevention of sulfur oxides. However, conventional methods involving catalytic reactions are found to have some limitations in complete removal of harmful sulfur compounds and to require relatively high cost. Recently, desulfurization process using microorganisms is known to be promising in terms of excellent sulfur removal efficiency and reasonably low treatment cost. For the biodesulfurization process to be effective, the solubilization of sulfur compounds into aqueous solution is a prerequisite. In this study, polyoxyethylene nonionic surfactants were used in order to enhance the solubilization of sulfur spectrophotometer. The solubilization of sulfur compounds was found to increase with temperature and to bo abruptly increased at above 1 wt % surfactant solutions. It was also observed that the longer the hydrophobic chain of the surfactant molecule, the higher solubilizing power of a nonionic surfactant. It was found that the Tergitol series surfactants showed higher solubilizing capacity than Neodol series presumably due to the disruption of the regular packing in the hydrocarbon region of the surfactant aggregates.

  • PDF

A Study about Water Footprint Evaluation of Industrial Sectors (국내 산업들의 물 발자국 산정에 관한 연구)

  • Kim, Junbeum;Kang, Hun;Park, Kihak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.400-406
    • /
    • 2013
  • Water footprint means the direct and indirect water resource amount used for the life cycle of different goods, services and industries. In this study, the direct and indirect water resource consumption in industrial sectors were calculated by using water footprint evaluation method. As a result, agriculture and marine product industry takes part of 93% of whole water resource amount, showing the greatest amount of basic unit of water coefficient (637 $m^3/won$) following by petroleum and cool products industry of about 13 $m^3/won$. In the agriculture and marine product industry, the direct water consumption was only 25 billion $m^3$ compared to the indirect water, which is 130 billion $m^3$. The next highest industry was chemical product industry, which consists of 2 billion $m^3$ of the direct water and 4.5 billion $m^3$ of the indirect water consumption. In case of industries which have high direct water, it would be more effective to reduce amount of water related to the industry than to reduce water in actual process. This water footprint of each industry and evaluation method will be useful tool and method for development of national water management policy and regulation.

Development of Adhesive Resins Formulated with Rapeseed Flour Hydrolyzates for Laminated Veneer Lumber and Its Performance Evaluation (유채박을 이용한 단판적층재용 접착제의 개발 및 성능평가)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.221-229
    • /
    • 2011
  • Due to the increase of oil price and the environmental issue such as the emission of volatile organic compounds, the necessity for developing alternative resins of petroleum-based adhesive resins, which have extensively been used for the manufacture of wood-based products, has been speculation since the early 1990. In our study, rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, were hydrolyzed by enzymes. As a crosslinking agents of the RSF hydrolyzates, phenol-formaldehyde prepolymers (PF) were prepared. The RSF hydrolyzates and PF were mixed to complete the formulation of RSF-based adhesive resins, and the resins were applied to make the laminated veneer lumber (LVL). The physical and mechanical properties of the LVL were measured to examine whether RSF can be used as raw materials of adhesive resins for the fabrication of LVL or not. The average moisture content and soaking delamination rate of the LVL bonded with RSF-based adhesive resins exceeded the minimum requirement of KS standard. Moreover, thermal analysis of the RSF-based resins showed similar tendencies except for the RSF-based adhesive resins formulated with pectinase-hydrolyzed RSF. The bending strengths of the LVL were higher than that of the LVL made with commercial PF resins. These results showed the potential of RSF as a raw material of alternative adhesives for the production of LVL. Further works on the optimal conditions of RSF hydrolysis and spreading characteristics for RSF-based adhesive resins is required to improve the adhesive performance of RSF-based resins.

Development of Metabolic Engineering Strategies for Microbial Platform to Produce Bioplastics (바이오플라스틱 생산 미생물 플랫폼 제작을 위한 대사공학 전략 개발)

  • Park, Si Jae;David, Yokimiko;Baylon, Mary Grace;Hong, Soon Ho;Oh, Young Hoon;Yang, Jung Eun;Choi, So Young;Lee, Seung Hwan;Lee, Sang Yup
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • As the concerns about environmental problems, climate change and limited fossil resources increase, bio-based production of chemicals and polymers from renewable resources gains much attention as one of the promising solutions to deal with these problems. To solve these problems, much effort has been devoted to the development of sustainable process using renewable resources. Recently, many chemicals and polymers have been synthesized by biorefinery process and these bio-based chemicals and plastics have been suggested as strong candidates to substitute petroleum-based products. In this review, we discuss current advances on the development of metabolically engineered microorganisms for the efficient production of bio-based chemicals and polymers.

A Study on Global Strategies of Tank Terminal Operators and Implications for Korea's Oil Hub Policy in Northeast Asia (탱크터미널 운영기업의 글로벌 전략과 우리나라의 동북아 석유물류허브 정책에 대한 시사점)

  • Lee, Choong-Bae;Park, Sun-Young
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.1
    • /
    • pp.63-86
    • /
    • 2009
  • With increasing uncertainty of energy market in the world, the policies for the energy resource security have become crucial Several countries with poor energy resource like Netherlands and Singapore have pursued the policy for becoming an oil hub in the region. Singapore has been an oil hub in East Asia for a long time not only because it is well located with a large number of countries exporting and importing oil but it has also pursued strong policies to become an oil hub while establishing favourable institutional, regulatory and business environment for accommodating major refineries and petro-chemical companies. However with growing trading volume of petroleum products in Northeast Asia and a record high price of oil in these days, the necessities of another oil hub in the region are considered in order to reap benefits of the security of economical and stable oil. South Korea is situated astride the main North Pacific shipping route, with deep water ports and proximity to Chinese and Japanese industrial centres that make tank terminal operators Ideal choices for the oil hub in Northeast Asia although it has several disadvantages such as lack of independent storage facilities, underdeveloped oil trading market and unfavourable business friendly climates etc. This study is focused on examining the globalization strategies of tank terminal operators such as Vopak, Oiltanking and Odfjell in order to suggest the policy implications for becoming an oil tub in Northeast Asia.

  • PDF

Determination of porosity and effective porosity of saturated porous media using a permittivity method in the laboratory (유전율법을 이용한 다공질 매질의 공극률 및 유효공극률의 측정에 관한 연구)

  • 김만일;니시가끼마코토
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.419-428
    • /
    • 2003
  • In order to evaluate groundwater movement and the infiltration of contaminants, such as petroleum products, the determination of porosity and effective porosity is very important. Porosity and effective porosity are important physical parameters that determine the transfer and movement of water and solutes in porous media. Various methods of determining these parameters have been developed, with varying degrees of accuracy and applicability. Most of the existing methods produce static results. They do not produce instantaneous and real time of porosity and effective porosity in a porous media. In this study, we used a new permittivity method called Frequency Domain Reflectometry with Vector analyzer (FDR-V) to determine the porosity and effective porosity of some sand samples in the laboratory. The advantage of the FDR-V method is that it instantaneously determines the temporal variation of dielectric constants of porous media. Then, the porosity and the effective porosity of porous media are computed using well established empirical equations. Results obtained from the FDR-V method compared favorably with results from other permittivity methods such as gravimetric, injection and replacement tests. The ratio of effective porosity to porosity was 85 - 92 %, when FDR-V was used. This value compared favourably with 90 %, which has been usually quoted in previous studies. Considering the convenience and its applicability, the EDR-V permittivity holds a great potential in porous media and contaminant transport studies.

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

New demand forecast for vocational high school graduates in regional strategic industries: Focusing on comparison between Daejeon and Jeonnam (지역전략산업에 따른 특성화고 졸업자 신규수요 예측: 대전과 전남 지역 비교를 중심으로)

  • Kim, Jin-Mo;Choi, Su-Jung;Jeon, Yeong-Uk;Oh, Jin-Ju;Ryu, Ji-Eun;Kim, Seon-Geun
    • Journal of vocational education research
    • /
    • v.36 no.1
    • /
    • pp.47-75
    • /
    • 2017
  • The purpose of this study was to provide basic data for policy making for secondary vocational education in each region and transformation in vocational high schools. To achieve this, the regional strategic industries in Daejeon and Jeonnam were selected, new demand for vocational high school graduates was forecasted in each industry and occupation. The results of the study are as follows. First, locational quotient analysis and regional shift-share analysis revealed that Daejon and Jeonnam have different strategic industries. Daejon, unlike Jeonnam strategically develops 'manufacturing food, beverage and tobacco', 'manufacturing timber and paper, printing and copying', 'public service and administration of national defense and social security' and 'manufacturing electrical devices, electronics and precision devices'. Jeonnam has specialized industries distinguished from Daejon's, which are 'manufacturing of machinery transportation equipments and etc', 'manufacturing of non-metallic minerals and metal products', 'electric, gas, steam and water supply systems/industries', 'manufacturing coal and chemical products, refining petroleum', 'mining' and 'agriculture, forestry and fishery'. Second, new demand for vocational high school graduates by occupations and industries showed regional differences(in Daejon and Jeonnam). According the forecast, Daejon will have many workforce demands based on manufacturing industries, on the other hand Jeonnam's focused on service industries. Analysis by occupations was also different, Daejon showed high demands on professional and related workers, while Jeonnam requested many new office and service workers. Third, new workforce demand by occupations in regional strategic industries is big part of overall new workforce demand both in Daejon and Jeonnam. Forth, according to the results of analyzing the new demand for vocational high school graduates in Daejeon and Jeonnam in terms of industry location quotient and change effect, there was high demand in industries with positive total change effects. In terms of location quotient, Daejeon and Jeonnam showed different results.

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis (촉매열분해를 이용한 백합나무 바이오오일의 연료 특성)

  • Chea, Kwang-Seok;Jeong, Han-Seob;Ahn, Byoung-Jun;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3~1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at $465^{\circ}C$ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.