Browse > Article
http://dx.doi.org/10.14478/ace.2014.1031

Development of Metabolic Engineering Strategies for Microbial Platform to Produce Bioplastics  

Park, Si Jae (Department of Environmental Engineering and Energy, Myongji University)
David, Yokimiko (Department of Environmental Engineering and Energy, Myongji University)
Baylon, Mary Grace (Department of Environmental Engineering and Energy, Myongji University)
Hong, Soon Ho (Department of Chemical Engineering, University of Ulsan)
Oh, Young Hoon (Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
Yang, Jung Eun (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST)
Choi, So Young (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST)
Lee, Seung Hwan (Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
Lee, Sang Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST)
Publication Information
Applied Chemistry for Engineering / v.25, no.2, 2014 , pp. 134-141 More about this Journal
Abstract
As the concerns about environmental problems, climate change and limited fossil resources increase, bio-based production of chemicals and polymers from renewable resources gains much attention as one of the promising solutions to deal with these problems. To solve these problems, much effort has been devoted to the development of sustainable process using renewable resources. Recently, many chemicals and polymers have been synthesized by biorefinery process and these bio-based chemicals and plastics have been suggested as strong candidates to substitute petroleum-based products. In this review, we discuss current advances on the development of metabolically engineered microorganisms for the efficient production of bio-based chemicals and polymers.
Keywords
Biorefinery; metabolic engineering; recombinant microorganism; biochemical; bioplastic;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. S. Jang, J. Lee, A. Malaviya, D. Y. Seung, J. H. Cho, and S. Y. Lee, Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering, Biotechnol. J., 7, 186-198 (2012).   DOI   ScienceOn
2 Y. S. Jang, J. Y. Lee, J. Lee, J. H. Park, J. A. Im, M. H. Eom et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum, MBio., 3, 00314-12 (2012).
3 K. Zhang, M. R. Sawaya, D. S. Eisenberg, and J. C. Liao, Expanding metabolism for biosynthesis of nonnatural alcohols, Proc. Natl. Acad. Sci. USA., 105, 20653-20658 (2008).   DOI
4 Z. G. Qian, X. X. Xia, and S. Y. Lee, Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine, Biotechnol. Bioeng., 104, 651-662 (2009).
5 S. J. Park, E. Y. Kim, W. Noh, Y. H. Oh, H. Y. Kim, and B. K. Song, Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli, Bioprocess Biosyst. Eng., 36, 885-892 (2013).   DOI   ScienceOn
6 E. Roberts and S. Frankel, Glutamic acid decarboxylase in brain, J. Biol. Chem., 188, 789-795 (1951).
7 X. Gao, J. C. Chen, Q. Wu, and G. Q. Chen, Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels, Curr. Opin. Biotechnol., 22, 768-774 (2011).   DOI
8 L. L. Madison and G. W. Huisman, Metabolic engineering of poly-(3-hydroxyalkanoates): from DNA to plastic, Microbiol. Mol. Biol. Rev., 63, 21-53 (1999).
9 S. J. Park, T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim, Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters, Biotechnol. Adv., 30, 1196-1206 (2012).   DOI
10 H. C. Stanton, Mode of action of gamma aminobutyric acid on the cardiovascular system, Arch. Int. Pharmacodyn. Ther., 143, 195-204 (1963).
11 S. H. Kim, B. H. Shin, Y. H. Kim, S. W. Nam, and S. Y. Jeon, Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2, Biotechnol. Bioprocess Eng., 12, 707-712 (2007).   과학기술학회마을   DOI
12 The future of industrial biorefineries, World Economic Forum report (2010).
13 S. H. Hong, J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, C. H. Kim, H. Jeong, C. G. Hur, and J. J. Kim, The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens, Nat. Biotechnol., 22, 1275-1281 (2004).   DOI   ScienceOn
14 J. W. Lee, D. Na, J. M. Park, J. Lee, S. Choi, and S. Y. Lee, Systems metabolic engineering of microorganisms for natural and non-natural chemicals, Nat. Chem. Biol., 8, 536-546 (2012).   DOI
15 J. H. Park, S. Y. Lee, T. Y. Kim, and H. U. Kim, Application of systems biology for bioprocess development, Trends Biotechnol., 26, 404-412 (2008).   DOI   ScienceOn
16 S. Atsumi and J. C. Liao, Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli, Appl. Environ. Microbiol., 74, 7802-7808 (2008).   DOI
17 S. J. Park, E. Y. Kim, W. Noh, H. M. Park, Y. H. Oh, and S. H. Lee, Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals, Metab. Eng., 16, 42-47 (2013).   DOI
18 C. Rathnasingh, S. M. Raj, J. E. Jo, and S. Park, Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol, Biotechnol. Bioeng., 104, 729-739 (2009).
19 S. J. Lee, H. Song, and S. Y. Lee, Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production, Appl. Environ. Microb., 72, 1939-1948 (2006).   DOI   ScienceOn
20 H. Song and S. Y. Lee, Production of succinic acid by bacterial fermentation, Enzyme Microb. Technol., 39, 352-361 (2006).   DOI   ScienceOn
21 S. Y. Lee, Bacterial polyhydroxyalkanoates, Biotechnol. Biong., 49, 1-14 (1996).   DOI
22 R. E. Drumright, P. R. Gruber, and D. E. Henton, Polylactic acid technology, Adv. Mater., 12, 1841-1846 (2000).   DOI
23 R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, Synthesis of poly(lactic acid): a review, Polym. Rev., 45, 325-349 (2005).
24 E. T. H. Vink, K. R. Rabago, D. Glassner, and P. R. Gruber, Applications of life cycle assessment to NatureWorksTM polylactide(PLA) production, Polym. Degrad. Stab., 80, 403-419 (2003).   DOI   ScienceOn
25 Y. K. Jung, T. Y. Kim, S. J. Park, and S. Y. Lee, Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers, Biotechnol. Bioeng., 105, 161-171 (2010).   DOI
26 T. D. Le Vo, J. S. Ko, S. J. Park, S. H. Lee, and S. H. Hong, Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli, J. Ind. Microbiol. Biotechnol., 40, 927-933 (2013).   DOI
27 T. D. Le Vo, J. S. Ko, S. H. Lee, S. J. Park, and S. H. Hong, Overexpression of Neurospora crassa OR74A glutamate decarboxylase in Escherichia coli for efficient GABA production, Biotechnol. Bioprocess Eng., 18, 1062-1066 (2013).   DOI   ScienceOn
28 A. Steinbuchel and H. E. Valentin, Diversity of bacterial polyhydroxyalkanoic acids, FEMS Microbiol. Lett., 128, 219-228 (1995).   DOI
29 W. Yuan, Y. Jia, J. Tian, K. D. Snell, U. Muh, A. J. Sinskey, R. H. Lambalot, C. T. Walsh, and J. Stubbe, Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies, Arch. Biochem. Biophys., 394, 87-98 (2001).   DOI
30 T. H. Yang, T. W. Kim, H. O. Kang, S. H. Lee, E. J. Lee, S. C. Lim, S. O. Oh, A. J. Song, S. J. Park, and S. Y. Lee, Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase, Biotechnol. Bioeng., 105, 150-160 (2010).   DOI
31 S. Zhang, M. Kamachi, Y. Takagi, R. W. Lenz, and S. Goodwin, Comparative study of the relationship between monomer structure and reactivity for two polyhydroxyalkanoate synthases, Appl. Microbiol. Biotechnol., 56, 131-136 (2001).   DOI
32 T. Selmer, A. Willanzheimer, and M. Hetzel, Propionate CoA-transferase from Clostridium propionicum. Cloning of gene and identification of glutamate 324 at the active site, Eur. J. Biochem., 269, 372-380 (2002).   DOI
33 S. J. Park, J. A. Jang, H. Lee, A. R. Park, J. E. Yang, J. Shin, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee, Metabolic engineering of Ralswwtonia eutropha for the biosynthesis of 2-hydroxyacid containing polyhydroxyalkanoates (PHAs), Metab. Eng., 20, 20-28 (2013).   DOI
34 J. E. Yang, S. Y. Choi, J. H. Shin, S. J. Park, and S. Y. Lee, Microbial production of lactate-containing polyesters, Microb. Biotechnol., 6, 621-636 (2013).
35 Q. Wang, Y. Xin, F. Zhang, Z. Feng, J. Fu, L. Luo, and Z. Yin, Enhanced $\gamma$-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli, World J. Microbiol. Biotechnol., 27, 693-700 (2011).   DOI
36 T. D. Le Vo, T. W. Kim, and S. H. Hong, Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli, Bioprocess Biosyst. Eng., 35, 645-650 (2012).   DOI   ScienceOn
37 김민홍, 효소를 이용한 고순도 감마 아미노 부틸산의 제조방법 국내등록특허 10-0857215 (2008).
38 T. H. Dinh, N. A. T. Ho, T. J. Kang, K. A. McDonald, and K. Won, Salt-free production of $\gamma$-aminobutyric acid from glutamate using glutamate decarboxylase separated from Escherichia coli, J. Chem. Tech. Biotechnol., DOI: 10.1002/jctb.4251 (2013).   DOI
39 H. Li, T. Qiu, G. Huang, and Y. Cao, Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation, Microb. Cell. Fact., 9, 85-92 (2010).   DOI   ScienceOn
40 T. H. Yang, Y. K. Jung, H. O. Kang, T. W. Kim, S. J. Park, and S. Y. Lee, Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli, Appl. Microbiol. Biotechnol., 90, 603-614 (2011).   DOI
41 Y. K. Jung and S. Y. Lee, Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli, J. Biotechnol., 151, 94-101 (2011).   DOI   ScienceOn
42 S. J. Park, T. W. Lee, S. C. Lim, T. W. Kim, H. Lee, M. K. Kim, S. H. Lee, B. K. Song, and S. Y. Lee, Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli, Appl. Microbiol. Biotechnol., 93, 273-283 (2012).   DOI   ScienceOn
43 Z. G. Qian, X. X. Xia, and S. Y. Lee, Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine, Biotechnol. Bioeng., 108, 93-103 (2011).   DOI
44 S. J. Park, K. H. Kang, H. Lee, A. R. Park, J. E. Yang, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee, Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli, J. Biotechnol., 165, 93-98 (2013).   DOI
45 S. J. Park, S. Y. Lee, T. W. Kim, Y. K. Jung, and T. H. Yang, Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria, Biotechnol. J., 7, 199-212 (2012).   DOI   ScienceOn
46 H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, and J. Boldt, Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol, Nat. Chem. Biol., 7, 445-452 (2011).   DOI