DOI QR코드

DOI QR Code

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS

TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구

  • So, Sunghyun (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Park, Daegeun (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Park, Jiyeon (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Song, Aran (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Jeong, Nakwon (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Yoo, Miyeon (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Hwang, Jungho (Department of Mechanical Engineering, Yonsei University) ;
  • Lee, Changyeop (Thermochemical Energy System Group, Korea Institute of Industrial Technology)
  • 소성현 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 박대근 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 박지연 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 송아란 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 정낙원 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 유미연 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 황정호 (연세대학교 기계공학과) ;
  • 이창엽 (한국생산기술연구원 고온에너지시스템그룹)
  • Received : 2019.10.04
  • Accepted : 2019.11.21
  • Published : 2019.12.31

Abstract

In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

대기 오염 물질 저감과 연소 효율 증가를 위해서 연소 환경 내 일산화탄소를 정밀하게 측정하는 것은 필수적인 요소이다. 일산화탄소(carbon monoxide, CO)는 불완전 연소 때 급격히 증가하며 질소산화물(nitrogen oxide, NOx)과 Trade-off 관계로 오염 물질 배출량과 불완전 연소 반응에 기여하는 중요한 가스종이다. 특히, 대형 연소 시스템 중 열처리로의 경우, 강판 표면위 산화층 형성을 억제하기 위해 과잉 연료 조건에서 환원 분위기로 운전이 진행된다. 이는 많은 양의 미연분 일산화탄소가 배출되는 원인이기도 하다. 하지만 연소 환경 내에서 일산화탄소 농도는 불균일한 연소 반응과 열악한 측정 환경으로 인하여 실시간 측정이 어렵다. 이러한 문제점을 극복하기 위해서 광학적 측정 방식인 파장 가변형 다이오드 레이저 흡수 분광법(tunable diode laser absorption spectroscopy, TDLAS)이 각광을 받고 있다. TDLAS 기법은 열악한 현장 측정, 빠른 응답성, 비접촉식 방식으로 연소 환경 내 특정 가스종 농도 측정에 적합하다. 본 연구는 과잉 연료 조건에서 당량비 제어를 위한 연소시스템을 제작하였으며 연소 배기가스 생성을 위해 LPG/공기 화염을 이용하였다. 당량비 변화에 따른 CO 농도 측정은 TDLAS와 Voigt 함수 기반 시뮬레이션으로 분석하였다. 또한 연소 생성물로부터 간섭이 없는 CO 광 흡수 영역 확보를 위해 근적외선 영역의 4300.6 cm-1을 선택하여 실험을 진행하였다.

Keywords

References

  1. Van der Lans, R. P., Glarborg P., and Johansen K. D., "Influence of Process Parameters on Nitrogen Oxide Formation in Pulverized Coal Burners," Prog. Energy Combust. Sci., 23, 349-377 (1997). https://doi.org/10.1016/S0360-1285(97)00012-9
  2. Christopher, A. P., and Andre, L. B., "Comparison of CO and NO Emissions from Propane, n-Butane, and Dimethyl Ether Premixed Flames," Energy Fuels., 13, 650-654 (1999). https://doi.org/10.1021/ef980196c
  3. Upschulte, B. L., Sonnenfroh, D. M., and Allen, M. G., "Measurements of CO, $CO_2$, OH, and $H_2O$ in Room-Temperature and Combustion Gases by Use of a Broadly Current-Tuned Multisection InGaAsP Diode Laser," Appl. Opt., 38(9), 1506-1512 (1999). https://doi.org/10.1364/AO.38.001506
  4. Teichert, H., Fernholz, T., and Ebert, V., "Simultaneous in situ Measurement of CO, $H_2O$ and Gas Temperatures in a Full-Sized Coal-Fired Power Plant by Near-Infrared Diode Lasers," Appl. Opt., 42(12), 2043-2051 (2003). https://doi.org/10.1364/AO.42.002043
  5. Mihalcea, R. M., Baer, D. S., and Hanson, R. K., "Diode Laser Sensor for Measurements of CO, $CO_2$ and $CH_4$ in Combustion Flows," Appl. Opt., 36(33), 8745-8752 (1997). https://doi.org/10.1364/AO.36.008745
  6. Chao, X., Jeffries, J. B., and Hanson, R. K., "Absorption Sensor for CO in Combustion Gases using 2.3 um Tunable Diode Lasers," Meas. Sci. Technol., 20, 115201-115209 (2009). https://doi.org/10.1088/0957-0233/20/11/115201
  7. Spearrin, R. M., Goldenstein C. S., Schultz, I. A., Jeffries, J. B., and Hanson, R. K., "Simultaneous Sensing of Temperature, CO, and $CO_2$ in a Scramjet Combustor using Quantum Cascade Laser Absorption Spectroscopy," Appl. Phys. B, 117, 689-698 (2014). https://doi.org/10.1007/s00340-014-5884-0
  8. Nagali, V., Chou, S. I., Baer, D. S., Hanson, R. K., and Segall, J., "Tunable Diode Laser Absorption Measurement of Methane at Elevated Temperatures," App. Opt., 35(21), 4026-4032 (1996). https://doi.org/10.1364/AO.35.004026
  9. Zhou, X., Liu, X., Jeffries, J. B., and Hanson, R. K., "Development of a Sensor for Temperature and Water Concentration in Combustion Gases using a Single Tunable Diode Laser," Meas. Sci. Technol., 14, 1459-1468 (2003). https://doi.org/10.1088/0957-0233/14/8/335
  10. Gamache, R. P., Kennedy, S., Hawkins, R., and Rothman, L. S., "Total Internal Partition Sums for Molecules in the Terrestrial Atmosphere," J. Mol. Struct., 517, 407-425 (2000). https://doi.org/10.1016/S0022-2860(99)00266-5
  11. Wang, F., Wu, Q., Huang, Z., Zhang, H., Yan. J., and Cen, K., "Simulataneous Measurement of 2-Dimensional $H_2O$ Concentration and Temperature Distribution in Premixed Methane/air Flame using TDLAS Based Tomography Technology," Opt. Commun., 346, 53-63 (2015). https://doi.org/10.1016/j.optcom.2015.02.015
  12. Puerta, J., and Martin, P., "Three and Four Generalized Lorentzian Approximations for the Voigt Line Shape," Appl. Opt., 20(22), 3923-3928 (1981). https://doi.org/10.1364/AO.20.003923
  13. Liu, X., Jeffiries J. B., and Hanson, R. K., "Measurement of Spectral Parameters of Water-Vapour Transitions near 1388 and 1345 nm for Accurate Simulation of High-Pressure Absorption Spectra," Meas. Sci. Technol., 18, 1185-1194 (2007). https://doi.org/10.1088/0957-0233/18/5/004
  14. McLean, A., Mitchell, C., and Swanston, D., "Implementation of an Efficient Analytical Approximation to the Voigt for Photoemission Lineshape Analysis," J. Electron Spectroc., 69(2), 125-132 (1994). https://doi.org/10.1016/0368-2048(94)02189-7
  15. Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris, B. D., Bernath, P. F., Brik, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J. M., Gamache, R. R., Harrison, J. J., Hartmann, J. M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Muller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, Vl., and Wagner, G., "The HITRAN2012 Molecular Spectroscopic Database," J. Quant. Spectrosc. Radiat. Transf., 130, 4-50 (2013). https://doi.org/10.1016/j.jqsrt.2013.07.002