Solubilization of Sulfur Compounds in the Diesel Oil by Nonionic Surfactants

비이온 계면활성제를 이용한 디이젤유의 황화합물 가용화에 관한 연구

  • Received : 1999.01.21
  • Accepted : 1999.05.01
  • Published : 1999.06.10

Abstract

Removal of sulfur compounds in the petroleum products is essential for the prevention of sulfur oxides. However, conventional methods involving catalytic reactions are found to have some limitations in complete removal of harmful sulfur compounds and to require relatively high cost. Recently, desulfurization process using microorganisms is known to be promising in terms of excellent sulfur removal efficiency and reasonably low treatment cost. For the biodesulfurization process to be effective, the solubilization of sulfur compounds into aqueous solution is a prerequisite. In this study, polyoxyethylene nonionic surfactants were used in order to enhance the solubilization of sulfur spectrophotometer. The solubilization of sulfur compounds was found to increase with temperature and to bo abruptly increased at above 1 wt % surfactant solutions. It was also observed that the longer the hydrophobic chain of the surfactant molecule, the higher solubilizing power of a nonionic surfactant. It was found that the Tergitol series surfactants showed higher solubilizing capacity than Neodol series presumably due to the disruption of the regular packing in the hydrocarbon region of the surfactant aggregates.

석유제품 중의 황화합물을 제거하는 방법으로 미생물에 의한 탈황법이 주목받고 있으며, 이를 위해서는 황화합물의 수용액 상에 대한 용해도를 증가시키는 것이 필수적이라 할 수 있다. 본 연구에서는 가용화제로서 폴리옥시에틸렌(polyoxyethylene, POE)계 비이온 계면활성제를 사용하여 디이젤유 중에 포함되어 있는 황화합물의 가용화도를 X-ray spectrometer를 이용하여 측정하였다. 온도 증가에 따라 황화합물의 가용화도가증가함을 알 수 있었으며, 계면활성제 농도에 따른 가용화도 변화에서는 임계마이셀농도(critical micellar concentration, CMC)보다 높은 1 wt % 이상의 농도 조건에서 가용화도가 급격히 증가 하였다. 본 실험에서 사용한 비이온 계면활성제들 중에서는 가장 소수성을 갖는 계면활성제의 가용화력이 가장 우수하였으며, 특히 동일한 조건에서 소수성기에 branched chain을 가진 Tergitol series 계면활성제가 linear chain을 가진 Neodol series 계면활성제에 비하여 우수한 가용화력을 나타내었다.

Keywords

References

  1. Air Quality Criteria for Sulfur Dioxide, Public AP-50 National Air Pollution Control Administration
  2. Process Biochemistry Microbial Removal of Organic Sulphur from Crude Oil and Environment: some New Perspective K. A. Malik
  3. Hydrocarbon Processing Biocatalytic Desulfurization D. J. Monticello
  4. Biochemistry and Biotechnology v.28/29 K. L. Sublette;K. J. Gwozdz
  5. 화학세계 v.35 권태완
  6. Chemtech Catching the Fossil Fuel Biodesulfurization Wave I. M. Camphell
  7. Colloids and Surfaces v.34 Y. C. Chic;L. J. Chen;W. I. Pien
  8. Ind. Eng. Chem. Res. v.26 S. N. Bhat;G. A. Smith;E. E. Tucker;S. D. Christian;J. F. Scamehorn
  9. J. of Colloid and Interface Science v.160 M. Abe;K. Mizuguchi;Y. Kondo;K. Ogino;H. Uchiyama;J. F. Scamehorn;E. E. Tucker;S. Christian
  10. Colloids and Surfaces v.A109 Y. Moroi;T. Morisue;M. Takechi;O. Shibata
  11. Environ. Sci. Technol. v.23 D. E. Kile;C. T. Chiou
  12. J. of Colloid and Interface Science v.158 S. Saito
  13. J. of Colloid and Interface Science v.152 Y. Tokuoka;H. Uchiyama;M. Abe;K. Ogino
  14. Environ. sci. Technol. v.25 C. T. Chiu;D. E. Kile;D. W. Rutherford
  15. Interfaical Phenomena M. J. Schick
  16. Nonionic Surfactants M. J. Schick
  17. Environ. Sci. Technol. v.24 R. Pinal;P. Suresh;C. Rao;Linda, S. Lee;Patricia V. Cline
  18. Effect of Electroytes Upon the Solubilization of Hydrocarbons and Polar Compounds v.72 H. B. Klevens
  19. Ph. D. Thesis, Rice Univ. T. Tungsubutra
  20. Colloids and Surfaces v.66 J. C. Lim;C. A. Miller;J. H. Yang