DOI QR코드

DOI QR Code

Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis

촉매열분해를 이용한 백합나무 바이오오일의 연료 특성

  • Chea, Kwang-Seok (Department of wood chemistry & microbiology, National Institute of Forest Science) ;
  • Jeong, Han-Seob (Department of wood chemistry & microbiology, National Institute of Forest Science) ;
  • Ahn, Byoung-Jun (Department of wood chemistry & microbiology, National Institute of Forest Science) ;
  • Lee, Jae-Jung (Department of wood chemistry & microbiology, National Institute of Forest Science) ;
  • Ju, Young-Min (Department of wood chemistry & microbiology, National Institute of Forest Science) ;
  • Lee, Soo-Min (Department of wood chemistry & microbiology, National Institute of Forest Science)
  • 채광석 (국립산림과학원 화학미생물과) ;
  • 정한섭 (국립산림과학원 화학미생물과) ;
  • 안병준 (국립산림과학원 화학미생물과) ;
  • 이재정 (국립산림과학원 화학미생물과) ;
  • 주영민 (국립산림과학원 화학미생물과) ;
  • 이수민 (국립산림과학원 화학미생물과)
  • Received : 2016.10.11
  • Accepted : 2017.03.20
  • Published : 2017.03.30

Abstract

Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3~1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at $465^{\circ}C$ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.

바이오오일은 고품질 화학물질로 이용이 가능하며 차세대 탄화수소 연료와 석유정제업 공급원료로 사용할 수 있기 때문에 촉망받는 신재생에너지의 하나로 상당한 관심을 받고 있다. 또한 제올라이트는 급속열분해 과정에서 크래킹 반응을 효과적으로 촉진시켜 탈산소 반응을 증가 시키고 탄화수소가 많은 안정된 바이오오일을 만든다. 그래서 본 연구에서는 백합나무 바이오오일 품질개선을 위해 촉매열분해(Control, Blackcoal, Whitecoal, ZeoliteY 및 ZSM-5)를 적용하여 특성을 조사하였다. 바이오오일의 특성 변화를 알아보기 위하여 0.3~1.4 mm 크기의 백합나무 시료 500 g을 $465^{\circ}C$에서 1.6초 동안 촉매열분해하여 바이오오일을 제조하였다. 촉매 조건 상태에서 바이오오일의 수율은 Control(54.0%)과 비교하여 Blackcoal(56.2%)를 제외하면, Whitecoal(53.5%), ZeoliteY (51.4%), 및 ZSM-5(52.0%)로 모두 감소했다. 수분 함량이 Control(37.4%)에서 촉매 처리후 37.4~45.2%로 증가함에 따라 발열량((High heating value)은 감소했다. 그러나 다른 다른 바이오오일 특성은 개선되었다. 촉매 적용 결과 바이오오일의 회분과 전산가(TAN)가 감소했고, 특히 수송연료로 중요한 특성인 점도는 Control cP(6,933) 에서 2,578 ~ 4,627 cP로 감소했다. 또한 ZeoliteY는 방향족탄화수소를 생산하고 점도를 개선시키는데 가장 효과적이였다.

Keywords

References

  1. K. S. Chea, T. S. Jo, S. M. Lee, H. W. Lee and Y. K. Park, Fuel Characteristics of Quercus variabilis bio-oil by Vaccum Distillation, J. of Korean Oil Chemists' Soc., 33, 75 (2016). https://doi.org/10.12925/jkocs.2016.33.1.75
  2. K. M. Kim, B.S. Kim, K. S. Chea, T. S. Jo, S. D. Kim and Y. K. Park, Ex-situ Catalysis Pyrolysis of Korea Native Oak Tree over Microporous Zeolites, J. of Korean Chem. Eng., 27, 407 (2016).
  3. K. S. Chea, T. S. Jo, S. H. Choi, S. M. Lee, H. W. Hwang and J. W. Choi, Properties of Quercus variabilis bio-oil prepared by sample preparation, J. of Korean Oil Chemists' Soc., 32, 83 (2015).
  4. S. K. Joo, I. G. Lee, H. W. Lee, K. S. Chea, T. S. Jo, S. C. Jung, S. C. Kim, C. H. Ko and Y. K. Park, Catalytic Conversion of Pinus Densiflora Over Mesoporous Catalysts Using Pyrolysis Process, Nanoscience and Nanotechnology, 15, 1 (2015). https://doi.org/10.1166/jnn.2015.9731
  5. P.T. Williams and N. Nugranad, Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks, Energy 25, 493 (2000). https://doi.org/10.1016/S0360-5442(00)00009-8
  6. J. Adam, M. Blazso, E. Meszaros, M. Stocker, M.H. Nilsen, A. Bouzga, J.E. Hustad, M. Gronli and G. Oye, Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts, Fuel 84, 1494 (2005).
  7. M.A. Jackson, D.L. Compton and A.A. Boateng, Screening heterogeneous catalysts for the pyrolysis of lignin, Analytical and Applied Pyrolysis 85, 226 (2009). https://doi.org/10.1016/j.jaap.2008.09.016
  8. H. Zhang, R. Xaio, H. Huang and G. Xiao, Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor, Bioresource Technology 100, 1428 (2009). https://doi.org/10.1016/j.biortech.2008.08.031
  9. D.J. Mihalcik, C.A. Mullen and A.A Boateng, Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components, Analytical and Applied Pyrolysis 92, 224 (2011). https://doi.org/10.1016/j.jaap.2011.06.001
  10. C. Chiemchaisri, W. Chiemchaisri, T. Kornboonraksa, C. Dumrongsukit, S. Threedeach, H. H. Ngo and S. Vigneswaran, Particle and microorganism removal in floating plastic media coupled with microfiltration membrane for surface water treatment. Water Sci Technol, 51, 93 (2005).
  11. K. H. Kim, T. S. Kim, S. M. Lee, D. H. Choi, H. Y. Yeo, I. G. Choi and J. W. Choi, Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis, Renewable Energy, 50, 188 (2013). https://doi.org/10.1016/j.renene.2012.06.030
  12. S. Czernik and A. Bridgwater, Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 18, 590 (2004). https://doi.org/10.1021/ef034067u
  13. D. Mohan, C. U. Pittman and P. H. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20, 848 (2006). https://doi.org/10.1021/ef0502397
  14. M. Boucher, A. Chaala, H. Pakdel and C. Roy, Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. PartII: stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy, 19, 351 (2000). https://doi.org/10.1016/S0961-9534(00)00044-1
  15. R. Fahmi, A.V. Bridgwater, I. Donnison, N. Yates and J. M. Jones, The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel, 87, 1230 (2008). https://doi.org/10.1016/j.fuel.2007.07.026
  16. K. D. Lee, J. S. Kim, Y. K. Park, B. S. Kang, S. D. Kim, Study of Bio-oil Recovery Effects by Ash Pretreatmet. Korean Society of Waste Management, 11, 534 (2004).
  17. S. Czernik and A. Bridwater, Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 18, 590 (2004). https://doi.org/10.1021/ef034067u
  18. A. Oasmaa, D. C. Elliott and J. Korhonen, Acidity of Biomass Fast Pyrolysis Bio-oils. Energy & Fuels, 24, 6548 (2010). https://doi.org/10.1021/ef100935r
  19. Demirbas. A, Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy conversion and management, 41, 633 (2000). https://doi.org/10.1016/S0196-8904(99)00130-2
  20. A.V. Bridgewater, Biomass fast pyrolysis, Thermal Science, 8, 21 (2004). https://doi.org/10.2298/TSCI0402021B