• 제목/요약/키워드: Perovskite

검색결과 1,214건 처리시간 0.027초

층상구조형 Perovskite $La_{1+x}Sr_{2-x}Mn_2O_7$ 상의 합성 및 특성연구 (Synthesis and Characterization of Layered Perovskite $La_{1+x}Sr_{2-x}Mn_2O_7$ Phases)

  • 송민석;서상일;이재열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.271-274
    • /
    • 1998
  • Metallic ferromagnet LA$_{1-x}$ Sr$_{x}$MnO$_3$ has received considerable attentions because of its metallic conductivity and giant magnetic resistivity. It is generally believed that layered perovskite SrO(LA$_{1-x}$ Sr$_{x}$MnO$_3$)$_{n}$ phase is insulating and shows no metallic transition. But recent report revealed that some single crystal SrO(LA$_{1-x}$ Sr$_{x}$MnO$_3$)$_{n}$ phase showed MR effect. In this study, layered perovskite SrO(LA$_{1-x}$ Sr$_{x}$MnO$_3$)$_2$ Phases were synthesized by solid state reaction at 140$0^{\circ}C$ in air atmosphere, for wide range of x and their phases were confirmed by X-ray diffraction. Electrical and magnetic properties were measured down to 10K and the possibility of MR effects was investigated.as investigated.

  • PDF

페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극에서 이산화탄소의 전해환원에 의한 알콜류 생성 (Carbon Dioxide Reduction to Alcoholson Perovskite-Type $La_{0.9}$$Sr_{0.1}$$CuO_3$ Electrodes)

  • 김태근;임준혁
    • 한국환경과학회지
    • /
    • 제5권5호
    • /
    • pp.677-682
    • /
    • 1996
  • 페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극을 이용하여 이산화탄소를 메탄올, 에탄올등의 알콜류와 아세트 알데히드로 전해환원하였다. 전해환원 실험은 전류밀도 100mA/c$m^2$ 그리고 환원 전위 -2 to -2.5 V vs. Ag/AgCl에서 수행하였다. 실험결과 메탄올은 11.6%, 에탄올은 15.3% 그리고 아세트알데히드는 6.2 %의 최고효율을 나타내었다. 따라서 페로브스카이트 전극은 알콜생성 면에서 기타 다른 금속전극에 비하여 매우 우수한 효과를 보여주었다.

  • PDF

A-자리 결함 perovskite La1/3NbO3 단결정의 유전특성 (Dielectric properties of A-site defect perovskite La1/3NbO3 single crystal)

  • 손정호
    • 한국결정성장학회지
    • /
    • 제20권6호
    • /
    • pp.249-253
    • /
    • 2010
  • A-자리 경함 perovskite $La_{1/3}NbO_3$ 단결정 시편을 제작하여 10~800 K 온도범위에서 유전특성을 조사하였다. 50 K와 650 K 부근에서 유전이상이 나타났으며, 고온영역(약 650 K)에서 유전상수의 thermal hysterisis가 크게 나타났다. 교류전도도 측정으로부터 560~690 K에서 입내 활성화 에너지는 0.43 eV로 가장 낮게 나타났다. 이들의 결과로부터 50 K 부근의 dielectric anomaly는 $Nb^{5+}$-이온의 antiparallel 변위에 기인한 것이며, 650 K 부근의 dielectric anomaly는 $La^{3+}$-이온의 재배열에 기인한 것으로 추측된다.

Synthesis and Characterisation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell

  • Kim, Yu-Mi;Pyun, Su-Il;Lee, Gyoung-Ja;Kim, Ju-Sik
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.116-125
    • /
    • 2007
  • This article is concerned with synthesis, characterisation and electrochemical application of the mixed conducting perovskite type oxide to electrode materials for solid oxide fuel cell. First, this review provides a comprehensive survey of the various synthetic methods such as solid state reaction, Pechini, glycine nitrate process and sol-gel methods for the preparation of perovskite type oxide powders. Subsequently, the electrical and microstructural properties of the mixed conducting oxides were discussed in detail. Finally, as electrochemical applications of the mixed conducting perovskite type oxides to electrode materials for solid oxide fuel cell, fundamentals of theoretical ac-impedance model for porous mixed conducting electrodes were introduced. Furthermore, the ac-impedance behaviour of porous and dense mixed conducting electrodes prepared by various synthetic methods was discussed.

마이크로 추력장치용 과산화수소 촉매 반응기 (Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster)

  • 이대훈;조정훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

Perovskite PMT-PT계의 강유전 특성 및 확산상전이 (Ferroelectric Properties and DPT in the Perovskite PMT-PT System)

  • 김연중
    • 한국진공학회지
    • /
    • 제17권2호
    • /
    • pp.122-129
    • /
    • 2008
  • Perovskite 구조의 PMT-PT계 고용체를 precursor columbite를 이용한 산화물 혼합법으로 제작하여 결정립의 성장과 상전이 현상을 분석하였다. $1250^{\circ}C$에서 4시간 유지하여 제작한 시편의 소결밀도는 이론밀도의 97% 이상이었고, 완전한 perovskite phase를 형성하였다. 치밀하게 소결 처리된 시편의 결정립의 크기는 $6\sim8{\mu}m$로 측정되었다. PMT-PT 고용체계는 복합 강유전 고용체의 전형적인 P-E 이력현상과 강한 진동수 분산특성이 관찰되었다. 특히 PMT가 70% 이하인 조성은 상전이 온도 이상에서도 자발분극이 완전히 소멸하지 않는 relaxor 특성을 보였으며, 유전상수와 유전손실의 큰 진동수 의존성을 보였다.

비화학양론적 전구체 조성 조절을 통한 페로브스카이트 태양전지의 개방전압 향상 (Enhancement in Open-circuit Voltage of Methylammmonium Lead Halide Perovskite Solar Cells Via Non-stoichiometric Precursor)

  • 윤희선;장윤희;이도권
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.12-16
    • /
    • 2018
  • The interest in perovskite solar cells has been skyrocketed owing to their rapid progress in efficiency in recent years. Here, we report the effect of non-stoichiometry in the methylammonium lead trihalide ($MAPbI_3$) precursors used in a solution process with different MAI : $PbI_2$ ratios of 1 : 0.96, 1 : 1.10, 1 : 1.15, and 1:1.20. With an increase in the $PbI_2$ content, the $PbI_2$ secondary phase was found to form at grain boundary region of perovskite thin films, as evidenced by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In terms of device performance, open-circuit voltage in particular is significantly improved with increasing the molar ratio of $PbI_2$, which is possibly ascribed to the reduction in recombination sites at grain boundary of perovskite and hence the prolonged life time of light-generated carriers according to the reported. As a result, the $PbI_2-excess$ devices exhibited a higher power conversion efficiency compared to the MAI-excess ones.

고효율 페로브스카이트 태양전지용 무기 금속 산화물 기반 정공수송층의 개발 (Development of Inorganic Metal Oxide based Hole-Transporting Layer for High Efficiency Perovskite Solar Cell)

  • 이하람;킴 마이;장윤희;이도권
    • Current Photovoltaic Research
    • /
    • 제8권2호
    • /
    • pp.60-65
    • /
    • 2020
  • In perovskite solar cells with planar heterojunction configuration, selection of proper charge-transporting layers is very important to achieve stable and efficient device. Here, we developed solution processible Cu doped NiOx (Cu:NiOx) thin film as a hole-transporting layer (HTL) in p-i-n structured methylammonium lead trihalide (MAPbI3) perovskite solar cell. The transmittance and thickness of NiOx HTL is optimized by control the spin-coating rate and Cu is additionally doped to improve the surface morphology of undoped NiOx thin film and hole-extraction properties. Consequently, a perovskite solar cell containing Cu:NiOx HTL with optimal doping ratio of Cu exhibits a power conversion efficiency of 14.6%.

수열합성법으로 제막한 MoO3 나노 구조체를 정공수송층으로 갖는 페로브스카이트 태양전지 특성분석 (Characteristics of Perovskite Solar Cell with Nano-Structured MoO3 Hole Transfer Layer Prepared by Hydrothermal Synthesis)

  • 송재관;안준섭;한은미
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.81-86
    • /
    • 2020
  • MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 ℃ to 200 ℃ and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 ℃ to 200 ℃, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 ℃ and mass ratio of AMT : nitric acid of 1 : 12 wt%.

Lanthanum Nickelates with a Perovskite Structure as Protective Coatings on Metallic Interconnects for Solid Oxide Fuel Cells

  • Waluyo, Nurhadi S.;Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Lee, Jong-Won
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.344-349
    • /
    • 2015
  • An interconnect is the key component of solid oxide fuel cells that electrically connects unit cells and separates fuel from oxidant in the adjoining cells. To improve their surface stability in high-temperature oxidizing environments, metallic interconnects are usually coated with conductive oxides. In this study, lanthanum nickelates ($LaNiO_3$) with a perovskite structure are synthesized and applied as protective coatings on a metallic interconnect (Crofer 22 APU). The partial substitution of Co, Cu, and Fe for Ni improves electrical conductivity as well as thermal expansion match with the Crofer interconnect. The protective perovskite layers are fabricated on the interconnects by a slurry coating process combined with optimized heat-treatment. The perovskite-coated interconnects show area-specific resistances as low as $16.5-37.5m{\Omega}{\cdot}cm^2$ at $800^{\circ}C$.