Browse > Article
http://dx.doi.org/10.5757/JKVS.2008.17.2.122

Ferroelectric Properties and DPT in the Perovskite PMT-PT System  

Kim, Y.J. (Unisontech.)
Publication Information
Journal of the Korean Vacuum Society / v.17, no.2, 2008 , pp. 122-129 More about this Journal
Abstract
Ferroelectric properties of the PMT-PT were also studied from the temperature dependence of hysteresis loops using a method slightly modified from Sawyer-Tower's. Dielectric, pyroelectric and piezoelectric properties of the ceramics in the system PMT-PT were investigated. The resulted densities of the PMT-PT ceramics system were greater than 97 % of the theoretical value. As observed SEM micrograph of the fracture surfaces of the PMT-PT ceramics system, the average grain sizes were increased about 3-5 ${\mu}m$ to 6-8 ${\mu}m$ with increasing sintering temperature. The specimens with PT<0.30 for PMT-PT solid solution system exhibited the dielectric and pyroelectric properties of a typical relaxor ferroelectrics. The composition with the maximum dielectric constant exhibits relatively superior pyroelectric and piezoelectric properties.
Keywords
ferroelectrics; perovskite/pyrochlore phase; diffuse phase transition; relaxor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. S. Snow, J. Am. Ceram. Soc. 272, 57 (1967)
2 S. M. Pilgrim, J. Am. Ceram. Soc. 72, 599 (1989)   DOI   ScienceOn
3 I. A. Santos and J. A. Eiras, J. Phys.:Condens. Matter 13, 11733 (2001)   DOI   ScienceOn
4 S. L. Swartz and T. R. Shrout, Mat. Res. Bull. 17, 1245 (1982)   DOI   ScienceOn
5 S. N. Gvasaliya, S. G. Lushnikov, and B. Roessli, Crystallography Reports 49, 108 (2004)
6 C. Kittel, Introduction to Solid State Physics 6th. Ed., (John Wiley & Sons, Inc., 1986) Ch.13
7 S. L. Swartz, T. R. Shrout, W. A. Schultze, and L. E. Cross, J. Am. Ceram. Soc. 67, 311 (1984)   DOI   ScienceOn
8 K. Uchino, Ceram. Bull. 65, 647 (1986)
9 B. Jaffe, R. S. Roth, and S. Marzullo, J. Appl. Phys. 25, 809 (1954)   DOI
10 B. Noheda, D. E. Cox, and G. Shirane, Physical Review B 66, 051104 (2002)   DOI
11 G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys. Solid State 1, 1429 (1959)
12 W. E. Lee and W. M. Rainforth, Ceramic Microstructures ; Property Control by Processing (Chapman and Hall, 1990) Ch.1
13 L. E. Cross, Ferroelectrics 151, 305 (1994)   DOI   ScienceOn
14 L. E. Cross, Ferroelectrics 76, 241 (1987)   DOI   ScienceOn
15 B. Sahoo and P. K. Panda, Proc. of ISSS 134 (2005)
16 G. A. Smolensky, Jpn. J. Appl. Phys. 28, 26 (1970)
17 G .A. Smolenskii, V. A. Isvpov, and A. I. Agranoskaya, Sov. Phys. Solid State 1, 150 (1959)
18 A. W. Searcy, Materials Science Research 21, Ceramic Microstructures '86 Role of Interfaces (Plenum Press, 1986) 591
19 G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and S. N. Popov, Sov. Phys. Solid State 2, 2584 (1961)
20 K. Okazaki and K. Nagata, J. Am. Ceram. Soc. 56, 82 (1973)   DOI   ScienceOn
21 R. W. Whatmore, Ferroelectrics 118, 241 (1991)   DOI   ScienceOn
22 G. Shirane and A. Takeda, J. Phys. Soc. Jpn. 7, 5 (1952)   DOI
23 The Am. Ceram. Soc. 95th. Annual Metting Short Course, Dielectric Ceramics (Am. Ceram. Soc. Inc., 1995)
24 V. V. Kirillov and V. A. Isupov, Ferroelectrics 5, 3 (1973)   DOI
25 J. Kuwata, K. Uchino and S. Nomura, Ferroelectrics 37, 579 (1981)   DOI   ScienceOn
26 Y. J. Kim, J. M. Jung, Y. H. Shin, Y. H. Park, and S. W. Choi, Ferroelectrics 195, 55 (1997)   DOI   ScienceOn
27 R. E. Loehman, Characterization of Ceramics (Butterworth-Heinemann, 1993) Ch.3