DOI QR코드

DOI QR Code

Enhancement in Open-circuit Voltage of Methylammmonium Lead Halide Perovskite Solar Cells Via Non-stoichiometric Precursor

비화학양론적 전구체 조성 조절을 통한 페로브스카이트 태양전지의 개방전압 향상

  • Yun, Hee-Sun (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Yoon Hee (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Doh-Kwon (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
  • 윤희선 (광전하이브리드연구센터, 한국과학기술연구원) ;
  • 장윤희 (광전하이브리드연구센터, 한국과학기술연구원) ;
  • 이도권 (광전하이브리드연구센터, 한국과학기술연구원)
  • Received : 2018.01.31
  • Accepted : 2018.03.05
  • Published : 2018.03.31

Abstract

The interest in perovskite solar cells has been skyrocketed owing to their rapid progress in efficiency in recent years. Here, we report the effect of non-stoichiometry in the methylammonium lead trihalide ($MAPbI_3$) precursors used in a solution process with different MAI : $PbI_2$ ratios of 1 : 0.96, 1 : 1.10, 1 : 1.15, and 1:1.20. With an increase in the $PbI_2$ content, the $PbI_2$ secondary phase was found to form at grain boundary region of perovskite thin films, as evidenced by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In terms of device performance, open-circuit voltage in particular is significantly improved with increasing the molar ratio of $PbI_2$, which is possibly ascribed to the reduction in recombination sites at grain boundary of perovskite and hence the prolonged life time of light-generated carriers according to the reported. As a result, the $PbI_2-excess$ devices exhibited a higher power conversion efficiency compared to the MAI-excess ones.

Keywords

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, "Organo metal halide perovskites as visible-light sensitizer for photovoltaic cells", J. Am. Chem. Soc., Vol. 131, pp. 6050-6051, 2009. https://doi.org/10.1021/ja809598r
  2. Best Research-Cell Efficiencies, NREL, 2017. Available from https://www.nrel.gov/pv/assets/images/efficiency-chart.png
  3. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, H. R. Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%", Sci. Rep., Vol. 2, No. 591, pp. 1-7, 2012.
  4. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science, Vol. 338, pp. 643-647, 2012. https://doi.org/10.1126/science.1228604
  5. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, S. I. Seok, "Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors", Nat. Photonics, Vol. 7, pp. 486-491, 2013. https://doi.org/10.1038/nphoton.2013.80
  6. M. Liu, M. B. Johnston, H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition", Nature, Vol. 501, pp. 395-398, 2013. https://doi.org/10.1038/nature12509
  7. S. W. Tong, J. Balapanuru, D. Fu, K. Loh, "Thermally stable mesoporous perovskite solar cells incorporating low-temperature processed graphene/polymer electron transporting layer", ACS Appl. Mater. Interfaces, Vol. 8, pp. 29496-29503, 2016. https://doi.org/10.1021/acsami.6b10278
  8. S. S. Mali, C. K. Hong, A. I. Inamdar, H. Im, S. E. Shim, "Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered $TiO_2$ electron transporting layers", Nanoscale, Vol. 9, pp. 3095-3104, 2017. https://doi.org/10.1039/C6NR09032J
  9. S. N. Habisreutinger, B. Wenger, H. J. Snaith, R. J. Nicholas, "Dopant-free planar n-i-p perovskite solar cells with steady-state efficiencies exceeding 18%", ACS Energy Lett., Vol. 2, pp. 622-628, 2017.
  10. D. H. Song, M. H. Jang, M. H. Lee, J. H. Heo, J. K. Park, S. J. Sung, D. H. Kim, K. H. Hong, S. H. Im, "A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells", J. Phys. D: Applied Physics, Vol. 49, No. 47, pp. 1-11, 2016.
  11. Y. J. Jeon, S. Lee, R. Kang, J. E. Kim, J. S. Yeo, S. H. Lee, S. S. Kim, J. M. Yun, D. Y. Kim, "Planar heterojunction perovskite solar cells with superior reproducibility", Sci Rep., Vol. 4, No. 6953, pp. 1-7, 2014.
  12. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen, "$CH_3NH_3PbI_3$ Perovskite/Fullerene Planar-heterojunction hybrid solar cells", Adv. Mater., Vol. 25, pp. 3727-3732, 2013. https://doi.org/10.1002/adma.201301327
  13. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, Y. M. Lam, "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells", Energy Environ. Sci., Vol. 7, pp. 399-407, 2014. https://doi.org/10.1039/C3EE43161D
  14. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen, "$CH_3NH_3PbI_3$ Perovskite/Fullerene Planar-heterojunction hybrid solar cells", Adv. Mater., Vol. 25, pp. 3727-3732, 2013. https://doi.org/10.1002/adma.201301327
  15. K. G. Lim, H. B. Kim, J. Jeong, H. Kim, J. Y. Kim, T. W. Lee, "Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function", Adv. Mater., Vol. 26, pp. 6461-6466, 2014. https://doi.org/10.1002/adma.201401775
  16. W. Yan, Y. Li, W. Sun, H. Peng, S. Ye, Z. Liu, Z. Bian, C. Huang, "High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization", RSC Adv., Vol. 4, pp. 33039-33046, 2014. https://doi.org/10.1039/C4RA05578K
  17. Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin, B. Sun, "Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor", Nanoscale, Vol. 6, pp. 10505-10510, 2014.
  18. Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. Liu, Y. Yang, "Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells", Nano Lett., Vol. 14, No. 7, pp. 4158-4163, 2014. https://doi.org/10.1021/nl501838y
  19. L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, C. Burda, "Femtosecond time-resolved transient absorption spectroscopy of $CH_3NH_3PbI_3$ perovskite films: evidence for passivation effect of $PbI_2$", J. Am. Chem. Soc., Vol. 136, No. 35, pp. 12205-12208, 2014. https://doi.org/10.1021/ja504632z
  20. T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale, Y. M. Lam, "Perovskite-based solar cells: impact of morphology and device architecture on device performance", J. Mater. Chem. A, Vol. 3, pp. 8943-8969, 2015. https://doi.org/10.1039/C4TA05226A
  21. Y. H. Lee, J. Luo, R. H. Baker, P. Gao, M. Gratzel, M. K. Nazeeruddin, "Unraveling the reasons for efficiency loss in perovskite solar cells", Adv. Funct. Mater., Vol. 25, pp. 3925-3933, 2015. https://doi.org/10.1002/adfm.201501024
  22. T. Supassai, N. Rujisamphen, K. Ullrich, A. Chemseddine, Th. Dittrich, "Formation of a passivating $CH_3NH_3PbI_3/PbI_2$ interface during moderate heating of $CH_3NH_3PbI_3$ layers", Appl. Phys. Lett. Vol. 103, Vol.103, No. 183906, pp. 1-3, 2013.
  23. C. R. Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, M. K. Nazeeruddin, "High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors", Energy Environ. Sci., Vol. 8, pp. 3550-3556, 2015. https://doi.org/10.1039/C5EE02555A
  24. T. Du, C. H. Burgess, J. Kim, J. Zhang, J. R. Durrant, M. A. McLachlan, "Formation, location and beneficial role of $PbI_2$ in lead halide perovskite solar cells", Sustainable Energy Fuels, Vol. 1, pp. 119-126, 2017. https://doi.org/10.1039/C6SE00029K
  25. S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, Q. X. Sum, Q. Xiong, "Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices", Adv. Opt Mater., Vol. 2, pp. 838-844, 2014. https://doi.org/10.1002/adom.201400106