DOI QR코드

DOI QR Code

Development of Inorganic Metal Oxide based Hole-Transporting Layer for High Efficiency Perovskite Solar Cell

고효율 페로브스카이트 태양전지용 무기 금속 산화물 기반 정공수송층의 개발

  • Lee, Haram (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Mai, Cuc Thi Kim (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Yoon Hee (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Doh-Kwon (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
  • 이하람 (광전하이브리드연구센터, 한국과학기술연구원) ;
  • 킴 마이 (광전하이브리드연구센터, 한국과학기술연구원) ;
  • 장윤희 (광전하이브리드연구센터, 한국과학기술연구원) ;
  • 이도권 (광전하이브리드연구센터, 한국과학기술연구원)
  • Received : 2020.05.10
  • Accepted : 2020.06.02
  • Published : 2020.06.30

Abstract

In perovskite solar cells with planar heterojunction configuration, selection of proper charge-transporting layers is very important to achieve stable and efficient device. Here, we developed solution processible Cu doped NiOx (Cu:NiOx) thin film as a hole-transporting layer (HTL) in p-i-n structured methylammonium lead trihalide (MAPbI3) perovskite solar cell. The transmittance and thickness of NiOx HTL is optimized by control the spin-coating rate and Cu is additionally doped to improve the surface morphology of undoped NiOx thin film and hole-extraction properties. Consequently, a perovskite solar cell containing Cu:NiOx HTL with optimal doping ratio of Cu exhibits a power conversion efficiency of 14.6%.

Keywords

References

  1. Kojima, A., Teshima, K., Y. Shirai, Y., T. Miyasaka, T., "Organometal Halide Perovskites as Visible-Light Sensitizer for Photovoltaic Cells," J. Am. Chem. Soc., Vol. 131, pp. 6050-6051, 2009. https://doi.org/10.1021/ja809598r
  2. Best Research-Cell Efficiencies, NREL, 2020, available from https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf
  3. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I., "High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange," Science, Vol. 348, pp. 1234-1237, 2015. https://doi.org/10.1126/science.aaa9272
  4. Jung, E. H., Jeon, N. J., Park, E. Y., Moon, C. S., Shin, T. J., Yang, T. Y., Noh, J. H., Seo, J., "Efficient, Stable and Scalable Perovskite Solar Cells using Poly (3-hexylthiophene)," Nature, Vol. 567, pp. 511-515, 2019. https://doi.org/10.1038/s41586-019-1036-3
  5. Song, Z., McElvany, C. L., Phillips, A. B., Celik, I., Krantz, P. W., Watthage, S. C., Liyanage, G. K., Apul, D., Heben, M. J., "A Technoeconomic Analysis of Perovskite Solar Module Manufacturing with Low-Cost Materials and Techniques," Energy Environ. Sci., Vol. 10, pp. 1297-1305, 2017. https://doi.org/10.1039/C7EE00757D
  6. Pascoe, A. R., Yang, M. J., Kopidakis, N., Zhu, K., Reese, M. O., Rumbles, G., Fekete, M., Duffy N. W., Cheng, Y. B., "Planar versus Mesoscopic Perovskite Microstructures: The Influence of $CH_3NH_3PbI_3$ Morphology on Charge Transport and Recombination Dynamics," Nano Energy, Vol. 22, pp. 439-452, 2016. https://doi.org/10.1016/j.nanoen.2016.02.031
  7. Zhang, L. Q., Zhang, X. W., Yin, Z. G., Jiang, Q., Liu, X., Meng, J. H., Zhao Y. J., Wang, H. L., "Highly Efficient and Stable Planar Heterojunction Perovskite Solar Cells via a Low Temperature Solution Process," J. Mater. Chem. A, Vol. 3, pp. 12133-12138, 2015. https://doi.org/10.1039/C5TA01898F
  8. Lakhdar, N., Hima, A., "Electron Transport Material Effect on Performance of Perovskite Solar Cells Based on $CH_3NH_3GeI_3$," Opt. Mater., Vol. 99, p. 109517, 2020. https://doi.org/10.1016/j.optmat.2019.109517
  9. Singh, R., Singh, P.K., Bhattacharya, B., Rhee, H.-W., "Review of Current Progress in Inorganic Hole-Transport Materials for Perovskite Solar Cells," Appl. Mater. Today, Vol. 14, pp. 175-200, 2019. https://doi.org/10.1016/j.apmt.2018.12.011
  10. Kang, D. H., Park, N. G., "On the Current-Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis," Adv. Mater., Vol. 31, p. 1805214, 2019. https://doi.org/10.1002/adma.201805214
  11. Elumalai, N. K., Uddin, A., "Hysteresis in Organic-Inorganic Hybrid Perovskite Solar Cells," Vol. 157, pp. 476-509, 2016. https://doi.org/10.1016/j.solmat.2016.06.025
  12. Chen, B., Yang, M., Priya, S., Zhu, K., "Origin of J-V Hysteresis in Perovskite Solar Cells," J. Phys. Chem. Lett., Vol. 7, pp. 905-917, 2016. https://doi.org/10.1021/acs.jpclett.6b00215
  13. Kim, M., Yi, M., Jang, W., Kim, J. K., Hwang, D. H., "Acidity Suppression of Hole Transport Layer via Solution Reaction of Neutral PEDOT:PSS for Stable Perovskite Photovoltaics," Polymers, Vol. 12, p. 129, 2020. https://doi.org/10.3390/polym12010129
  14. Im, S., Kim, W., Cho, W., Shin, D., Chun, D. H., Rhee, R., Kim, J. K., Yi, Y., Park, J. H., Kim, J. H., "Improved Stability of Interfacial Energy-Level Alignment in Inverted Planar Perovskite Solar Cells," ACS Appl. Mater. Interfaces, Vol. 10, pp. 18964-18973, 2018. https://doi.org/10.1021/acsami.8b03543
  15. Chen, J., Park, N. G., "Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells," J. Phys. Chem. C, Vol. 122, pp. 14039-14063, 2018. https://doi.org/10.1021/acs.jpcc.8b01177
  16. Irwin, M. D., Buchholz, B., Hains, A. W., Chang, R. P. H., Marks, T. J., "p-Type Semiconducting Nickel Oxide as an Efficiency-Enhancing Anode Interfacial Layer in Polymer Bulk-Heterojunction Solar Cells," Proc. Natl. Acad. Sci. U.S.A., Vol. 105, pp. 2783-2787, 2008. https://doi.org/10.1073/pnas.0711990105
  17. Patil, V., Pawar, S., Chougule, M., Godse, P., Sakhare, R., Sen, S., Joshi, P., "Effect of Annealing on Structural, Morphological, Electrical and Optical Studies of Nickel Oxide Thin Films," J. Surf. Eng. Mater. Adv. Technol., Vol. 1, pp. 35-41, 2011. https://doi.org/10.4236/jsemat.2011.12006
  18. Dia, C., Huang, C., Yang, C., Wu, C., "Morphological, Optical, and Electrical Properties of p-Type Nickel Oxide Thin Films by Nonvacuum Deposition," Nanomaterials, Vol. 10, p. 636, 2020. https://doi.org/10.3390/nano10040636
  19. Kofstadt, P., "Non-Stoichiometry, Diffusion, and Electrical Conductivity," Wiley, New York, 1972.
  20. Smyth, D., The Defect Chemistry of Metal Oxides, Oxford University Press, Oxford, 2000.
  21. Lee, J. H., Noh, Y. W., Jin, I. S., Park, S. H., Jung, J. W., "A Solution-Processed Cobalt-Doped Nickel Oxide for High Efficiency Inverted Type Perovskite Solar Cells," J. Power Sources, Vol. 412, pp. 425-432, 2019. https://doi.org/10.1016/j.jpowsour.2018.11.081
  22. Fu, Q., Xiao, S., Tang, X., Hu, T., "High-Performance Inverted Planar Perovskite Solar Cells Based on Solution Processed Rubidium-Doped Nickel Oxide Hole-Transporting Layer," Org. Electron., Vol. 69, pp. 34-41, 2019. https://doi.org/10.1016/j.orgel.2019.03.004
  23. Kim, J., Lee, H. R., Kim, H. P., Lin, T., Kanwat, A., Bin A. R., Yusoff, M., Jang, J., "Effects of UV-Ozone Irradiation on Copper Doped Nickel Acetate and Its Application to Perovskite Solar Cells," Nanoscale, Vol. 8, pp. 9284-9292, 2016. https://doi.org/10.1039/C6NR01308B
  24. Jo, J. W., Seo, M.-S., Jung, J. W., Park, J.-S., Sohn, B.-H., Ko, M. J., Son, H. J., "Development of Organic-Inorganic Double Hole-Transporting Material for High Performance Perovskite Solar Cells," J. Power Sources, Vol. 378, pp. 98-104, 2018. https://doi.org/10.1016/j.jpowsour.2017.12.024
  25. Jung, J. W., Chueh, C.-C., Jen, A. K.-Y., "A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells," Adv. Mater., Vol. 27, pp. 7874-7880, 2015. https://doi.org/10.1002/adma.201503298
  26. Liu, M.-H., Zhou, Z.-J., Zhang, P.-P., Tian, Q.-W., Zhou, W.-H., Kou, D.-X., Wu, S.-X., "p-Type Li, Cu-Codoped $NiO_x$ Hole-Transporting Layer for Efficient Planar Perovskite Solar Cells," Opt. Express, Vol. 24, pp. A1349-A1359, 2016. https://doi.org/10.1364/OE.24.0A1349
  27. He, Q., Yao, K., Wang, X., Xia, X., Leng, S., Li, F., "Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells," ACS Appl. Mater. Interfaces, Vol. 9, pp. 41887-41897, 2017. https://doi.org/10.1021/acsami.7b13621
  28. Baena, J. P. C., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T. J., Kandada, A. R. S., Zakeeruddin, S. M., Petrozza, A., Abate, A., Nazeeruddin, M. K., Gratzel, M., Hagfeldt, A., "Highly Efficient Planar Perovskite Solar Cells through Band Alignment Engineering," Energy Environ. Sci., Vol. 8, pp. 2928-2934, 2015. https://doi.org/10.1039/C5EE02608C
  29. Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I., "Compositional Engineering of Perovskite Materials for High-Performance Solar Cells," Nature, Vol. 517, pp. 476-480, 2015. https://doi.org/10.1038/nature14133
  30. Jafar, M. M. A. G., Saleh, M. H., Al-Daraghmeh, T. M., Ahmad, M. J. A., AbuEid, M. A., Ershaidat, N. M., Bulos, B. N., "Structural, Stoichiometric and Optical Constants of Crystalline Undoped Lead Iodide Films Prepared by the Flash-Evaporation Method," Appl. Phys. A, Vol. 125, p. 672, 2019. https://doi.org/10.1007/s00339-019-2945-6
  31. Noh, M. F. M., The, C. H., Daik, R., Lim, E. L., Chi, C. Y., Ibrahim, M. A., Ludin, N. A., Yusoff, A. R. B. M., Jin, J., Teridi, M. A. M., "The Architecture of the Electron Transport Layer for a Perovskite Solar Cell," J. Mater. Chem. C, Vol. 6, pp. 682-712, 2018. https://doi.org/10.1039/C7TC04649A
  32. Agarwal, S., Nair, P. R., "Pinhole Induced Efficiency Variation in Perovskite Solar Cells," J. Appl. Phys., Vol. 122, p. 163104, 2017. https://doi.org/10.1063/1.4996315
  33. Reid, O. G., Yang, M., Kopidakis, N., Zhu, K., Rumbles, G., "Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films," ACS Energy Lett., Vol. 1, pp. 561-565, 2016. https://doi.org/10.1021/acsenergylett.6b00288
  34. Chen, Y., Li, B., Huang, W., Gao, D., Liang, Z., "Efficient and Reproducible $CH_3NH_3PbI_{3-x}(SCN)_x$ Perovskite based Planar Solar Cells," Chem. Commun., Vol. 51, p. 11997, 2015. https://doi.org/10.1039/C5CC03615A
  35. Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J., "Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement," Adv. Mater., Vol. 26, pp. 6503-6509, 2014. https://doi.org/10.1002/adma.201401685
  36. Liu, M., Johnston, M. B., Snaith, H. J., "Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition," Nature, Vol. 501, pp. 395-398, 2013. https://doi.org/10.1038/nature12509
  37. Yang, Z., Rajagopal, A., Chueh, C., Jo, S. B., Liu, B., Zhao, T., Jen, A. K. Y., "Stable Low-Bandgap Pb-Sn Binary Perovskites for Tandem Solar Cells," Adv. Mater., Vol. 28, pp. 8990-8997, 2016. https://doi.org/10.1002/adma.201602696
  38. Lin, T., Li, X., Jang, J., "High Performance p-Type $NiO_x$ Thin-Film Transistor by Sn Doping," Appl. Phys. Lett., Vol. 108, p. 233503, 2016. https://doi.org/10.1063/1.4953222
  39. Park, W. J., Shin, H. S., Ahn, B. D., Kim, G. H., Lee, S. M., Kim, K. H., Kim, H. J., "Investigation on Doping Dependency of Solution-Processed Ga-Doped ZnO Thin Film Transistor," Appl. Phys. Lett., Vol. 93, p. 083508, 2008. https://doi.org/10.1063/1.2976309
  40. Kim, G. H., Jeong, W. H., Ahn, B. D., Shin, H. S., Kim, H. J., Kim, H. J., Ryu, M.-K., Park, K.-B., Seon, J.-B., Lee, S.-Y., "Investigation of the Effects of Mg Incorporation into InZnO for High-Performance and High-Stability Solution-Processed Thin Film Transistors," Appl. Phys. Lett., Vol. 96, p. 163506, 2010. https://doi.org/10.1063/1.3413939
  41. Jeong, S., Jeong, Y., Moon, J., "Solution-Processed Zinc Tin Oxide Semiconductor for Thin-Film Transistors," J. Phys. Chem. C, Vol. 112, pp. 11082-11085, 2008. https://doi.org/10.1021/jp803475g
  42. Adnan, M., Lee, J. K., "Highly Efficient Planar Heterojunction Perovskite Solar Cells with Sequentially Dip-Coated Deposited Perovskite Layers from a Non-Halide Aqueous Lead Precursor," RSC Adv., Vol. 10, pp. 5454-5461, 2020. https://doi.org/10.1039/C9RA09607H