Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.2.81

Characteristics of Perovskite Solar Cell with Nano-Structured MoO3 Hole Transfer Layer Prepared by Hydrothermal Synthesis  

Song, Jae-Kwan (Department of Advanced Chemicals & Engineering, Chonnam National University)
Ahn, Joon-Sub (Department of Advanced Chemicals & Engineering, Chonnam National University)
Han, Eun-Mi (School of Chemical Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.30, no.2, 2020 , pp. 81-86 More about this Journal
Abstract
MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 ℃ to 200 ℃ and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 ℃ to 200 ℃, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 ℃ and mass ratio of AMT : nitric acid of 1 : 12 wt%.
Keywords
molybdenum oxide; hole transfer layer; hydrothermal synthesis; nanorods; perovskite solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009).   DOI
2 E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh and J. W. Seo, Nature, 567, 511 (2019).   DOI
3 N. D. Pham, V. T. Tiong, P. Chen, L. Wang, G. J. Wilson, J. Bell and H. Wang, J. Mater. Chem. A, 5, 5195 (2017).   DOI
4 Y. Shao, Z. Xiao, C. Bi, Y. Yuan and J. Huang, Nat. Commun., 5, 5784 (2014).   DOI
5 W. Chen, Y. Wu1, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel and L. Ha, Science, 350, 944 (2015).   DOI
6 J. H. Kim, P. Liang, S. T. Williams, N. Cho, C. Chueh, M. S. Glaz, D. S. Ginger and A. K.-Y. Jen, Adv. Mater., 27, 695 (2015).   DOI
7 T. Oku, R. Motoyoshi, K. Fujimoto, T. Akiyama, B. Jeyadevan and J. Cuya, J. Phys. Chem. Solids, 72, 1206 (2011).   DOI
8 S. Chatterjee and A. J. Pal, J. Phys. Chem. C, 120, 1428 (2016).   DOI
9 K. Zilberberg, S. Trost, J. Meyer, A. Kahn, A. Behrendt, D. Lutzenkirchen-Hecht, R. Frahm and T. Riedl, J. Mater. Chem. C, 21, 4776 (2011).
10 L. Mai, F. Yang, Y. Zhao, X. Xu, L. Xu, B. Hu, Y. Luo and H. Liu, Mater. Today, 14, 346 (2011).   DOI
11 S. Y. Lin, C. M. Wang, K. S. Kao, Y. C. Chen and C. C. Liu, J. Sol-Gel Sci. Technol., 53, 51 (2010).   DOI
12 M. Dhanasankar, K. K. Purushothaman and G. Muralidharan, Appl. Surf. Sci., 257, 2074 (2011).   DOI
13 A. Khademi, R. Azimirad, A. A. Zavarian and A. Z. Moshfegh, J. Phys. Chem. C, 113, 19298 (2009).   DOI
14 H. Farsi, F. Gobal, H, Raissi and S. Moghiminia, J. Solid State Electrochem, 14, 643 (2010).   DOI
15 A. D. Sayede, T. Amriou, M. Pernisek, B. Khelifa and C. Mathieu, Chem. Phys., 316, 72 (2005).   DOI
16 D. Y. Kim, J. Subbiah, G. Sarasqueta, F. So, H. Ding, Irfan and Y. Gao, Appl. Phys. Lett., 95, 093304 (2009).   DOI
17 T. Ivanova, K. A. Gesheva, G. Popkirov, M. Ganchev and E. Tzvetkova, Mater. Sci. Eng., B, 119, 232 (2005).   DOI
18 R. S. Patil, M. D. Uplane and P. S. Patil, Appl. Surf. Sci., 252, 8050 (2006).   DOI
19 N. Miyata, T. Suzuki and R. Ohyama, Thin Solid Films, 281-282, 218 (1996).   DOI
20 L. Kullman, A. Azens and C. G. Granqvist, Sol. Energy Mater. Sol. Cells, 61, 189 (2000).   DOI
21 P. S. Patil, R. K. Kawar, S. B. Sadale, A. I. Inamdar and S. S. Mahajan, Sol. Energy Mater. Sol. Cells, 90, 1629 (2006).   DOI
22 N. Maheswari and G. Muralidharan, Appl. Surf. Sci., 416, 461 (2017).   DOI
23 Y. Wang, F. Jin, M. Sasaki, Wahyudiono, F. Wang, Z, Jing and M. Goto, AIChE J., 59, 6 (2013).
24 J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bombem, Handbook of X-ray Photoelectron Spectroscopy, p. 112, Eds. J. Chastain, PerkinElmer Corporation, Minnesota, USA (1992).
25 C. Julien, A. Khelfa, O. M. Hussain and G. A. Nazri, J. Cryst. Growth, 156, 235 (1995).   DOI