• Title/Summary/Keyword: Perceptions of classroom

Search Result 141, Processing Time 0.104 seconds

Using Smart Devices in a Future School to Explore the Effects of Science Classes on Positive Science Experiences and Science Learning Identity (미래학교의 스마트 기기를 활용한 과학 수업이 과학긍정경험과 과학 학습자 정체성에 미치는 영향 탐색)

  • Yu, Eun-Jeong;Kim, Kyung Hwa
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.176-193
    • /
    • 2020
  • The purpose of this study was to explore the effects of science classes on positive science experiences and science learner identity, using smart devices in a future school: C middle school. We conducted a paired t test at the beginning and end of the first school year with first-grade students at the future school to investigate positive experiences with science (Shin et al., 2017). Additionally, first and second-grade students in future schools using smart devices wrote and drew their own depictions in science classes to explore science learner identity, based on a modified analytical framework (Luehmann, 2009). The results show that significant effects on science-related career aspirations, self-concepts, and academic emotions were produced by science classes using smart devices. Science classes using smart devices helped students improve their level of agency and activity, solve problems with immediate and sufficient feedback, and experience meaningful perceptions of the nature of science. On the other hand, if students were immature in terms of their use of smart devices, they felt pressured to participate in the classes. The results of this study can be used as a foundation for designing various classroom contexts for the use of smart devices.

Secondary Science Teachers' Awareness and Perceptions of Students' Misconceptions about the Particulate Nature of Matter (물질의 입자성과 관련된 학생들의 오개념에 대한 중등 교사들의 지식과 인식)

  • Park, Ji-Ae;Han, Su-Jin;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.1
    • /
    • pp.42-53
    • /
    • 2010
  • Identifying students' misconceptions by teachers is the primary step in using constructivist teaching strategies. We investigated how secondary science teachers were aware of students' misconceptions about the particulate nature of matter and analyzed the total number of differences of predicted misconceptions by their background variables. We also investigated how they addressed students' misconceptions in their instruction, and how necessary they thought it was to identify students' misconceptions for teaching science concepts. A survey was administered to 87 science teachers at 28 middle schools in Seoul. Teachers' predictions were compared with the misconceptions of 240 seventh-grade students. The teachers, as a group, identified almost all the misconceptions held by the students. However, they were unable to predict which types of misconceptions were more frequent. The total number of misconceptions predicted by the teachers who had careers of less than 10 years, possessed Master's degrees, or majored in chemical education was significantly higher. Although most teachers stated that knowing students' misconceptions was needed for their instruction, they rarely and simply addressed them in their instructions. Many techers faced misconceptions in classroom activities, and only few teachers found them through publications relating to students' misconceptions, teacher preparation courses and/or in-service training programs. Educational implications are discussed.

An Analysis of Middle School Students' Perceptions and Learning Satisfaction in SMART Learning-based Science Instruction (스마트러닝 기반 과학수업에 대한 중학생들의 인식과 학습만족도 분석)

  • Park, Su-Kyeong
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.727-737
    • /
    • 2013
  • The purpose of this study was to investigate the middle school students' perception and their learning satisfaction in SMART learning based science instruction. Three types of modules on the solar system and lunar phases unit at the middle school level were developed and lessons on each module were taught to 207 student participants. All participants were provided with tabletPC(iPad2) with iOS5 installed, and using astronomy app Solar Walk, mirroring function, QR code, and Google Presentation, the lessons were carried out both in classroom and at home. The instrument for assessing students' perception on the SMART learning-based instruction was developed based on 4 factors including Self-directed, Motivation, Adaptiveness, and Technology Embedded, with a Likert scale from 1-5 on 20 items. The learning satisfaction survey instrument was originally from Keller's work (1987), and its test items were adapted and modified. To reveal the perception and learning satisfaction about SMART learning-based science lessons, the participants were comparatively analyzed by gender and science achievement levels. Results indicated that male students showed positive perception for the SMART learning-based instruction. Group with higher science achievement scores showed more positive perception of the SMART learning-based instruction in terms of Self-directed and Motivation factor. Also, the learning satisfaction of male students was higher than female students and group with higher academic ability more satisfied with the SMART learning-based instruction than the low group. The results provide implications for future development of programs and help set a direction of increasing the use of a SMART learning-based science in school.

Implementing Instructional Modules for Engineering Ethics into Engineering Curricula (공학윤리 교육모듈 컨텐츠를 이용한 전공교과목에서의 공학윤리 교육)

  • Lee, Young-Nam;Kim, Dae-Wook;Yu, Ji-Beom;Hwang, Sung-Ho;Kim, Hyun-Soo
    • Journal of Engineering Education Research
    • /
    • v.10 no.4
    • /
    • pp.78-92
    • /
    • 2007
  • This study presents how the engineering ethics instructional modules have been developed based on Korean culture and how they are implemented into the existing engineering curricula at Sungkyunkwan University. The engineering ethics instructional modules were designed to be taught by engineering faculty members who did not have any teaching experience in ethics. As a result, it was determined that the engineering ethics instructional modules should include a detailed instructor lesson plan and all supporting resources such as slides (Power Point base), and handouts, or assessment units (pre- and post-test). Two 75 minute modules developed in this study consist of the diverse instructional activities for various student group sizes. In order to improve students' interests and classroom attention, various visual and audio resources such as famous movies, cartoons, and poems were included in the instructional resources. In addition, a number of case studies which might happen in the students' daily lives were chosen. The resulting ethical module No. 1 has been instructed in the existing engineering classes during the 1st semester in 2007. Overall, the students reported positive impressions of the modules and the faculty members also reported favorable perceptions of the modules. Also, team based activities encouraged students to participate in constructing the event trees, which are a basic analysis tool for ethics case studies. The results of this study will provide a guideline of implementing engineering ethics into the engineering curricula to other engineering programs and schools.

Pre-service Science Teachers' Understanding of Students' Misconceptions in Physics and Perceptions on "Teacher as a Researcher" through the Research Experience (예비 과학교사의 연구 수행 경험이 학생의 물리 오개념에 대한 이해 및 '연구자로서의 교사'에 대한 인식에 미치는 영향)

  • Ko, Yeonjoo;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.449-457
    • /
    • 2014
  • Recent studies have shown that teachers should have be aware of and understand students' misconceptions, which is one of the major components of PCK. However, teachers often have difficulties in understanding misconceptions and in applying appropriate instructional strategies to change misconceptions. Thus, we designed a method course for pre-service teachers (PSTs) adapting the concept of "teacher as researcher". In the course, PSTs conducted research to investigate students' misconceptions in physics. Twenty-five female PSTs participated in the study. They went through the research process including creating question items, administering items to their target populations, collecting and analyzing student responses, and writing a research paper. Data source included individual interviews with the PSTs, field notes during classroom observation and PSTs' research papers. The results were as follows. First, the PSTs confirmed students' misconceptions and learning difficulties in physics. They experienced discrepancies between their conjecture and research findings. Second, PSTs developed the sophisticated understanding of students' misconceptions and appropriate teaching strategies. Third, the research experience provided the PSTs opportunities to reexamine their physics content knowledge while creating items and explaining scientific concepts. They realized that physics teachers should develop sound understanding of physics concepts for guiding students to have less misconception. Lastly, they realized the necessity of being a teacher as a researcher.

Exploring Teachers' Perceptions of Computational Thinking Embedded in Professional Development Program (컴퓨팅 사고를 반영한 교사연수 과정에서 나타난 교사의 인식 탐색)

  • Hwang, Gyu Jin;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.344-364
    • /
    • 2021
  • The study explored how two elementary school teachers perceived computational thinking, reflected them into curriculum revision, and taught them in the classroom during longitudinal professional developed program (PDP) for nine months. Computational thinking is a new direction in educational policy-making including science education; therefore we planned to investigate participating teachers' perception of computational thinking to provide their fundamental understandings. Nine meetings, lasting about two hours each, were held with the participating teachers and they developed 11 lesson plans for one unit each, as they formed new understandings about computational thinking. Data were collected through PDP program while two teachers started perceiving computational thinking, revising their curriculum, and implementing it into their class for nine months. The results were as follows; first, elementary school teachers' perception of computational thinking was that the definition of scientific literacy as the purpose of science education was extended, i.e., it refers to scientific literacy to prepare students to be creative problem solvers. Second, STEAM (science, technology, engineering, arts, and mathematics) lessons were divided into two stages; concept formation stage where scientific thinking is emphasized, and concept application, where computational thinking is emphasized. Thirdly, computational thinking is a cognitive thinking process, and ICT (informational and communications technology) is a functional tool. Fourth, computational thinking components appear repeatedly and may not be sequential. Finally, STEAM education can be improved by utilizing computational thinking. Based on this study, we imply that STEAM education can be activated by computational thinking when teachers are equipped with competencies of understanding and implementing computational thinking within the systematic PDPs, which is very essential for newly policies.

Designing Collective Intelligence-based Instructional Models for Teaching Socioscientific Issues (집단지성 원리를 적용한 과학관련 사회·윤리적 쟁점 수업 모형의 개발)

  • Lee, Hyunju;Choi, Yunhee;Ko, Yeonjoo
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.6
    • /
    • pp.523-534
    • /
    • 2014
  • This study aimed to develop collective intelligence (CI) based instructional models for teaching socioscientific issues on the basis of intimate collaboration with science teachers, and to investigate the participating teachers' perceptions on the effectiveness of the instructional models. Adapting the ADDIE model, we suggested three types of SSI instructional models (i.e. generative model, exploratory model, and decision-making model). Generative models emphasized the process of brainstorming ideas or possible solutions for SSI. Exploratory models focused on providing students opportunities to explore various SSI cases and diverse perspectives to understand its controversial nature and complexity. Decision-making models encouraged students to negotiate or develop a group-consensus on SSI through the dialogical process. After implementing the instructional models in the science classroom, the teachers reported that CI-based SSI instructional models contributed to encouraging students' active participation and collaboration as well as to improving the quality of their argument or discourses on SSI. They also supported the importance of developing collective consciousness on the issues in the beginning of the SSI class, providing independent time and space for reflecting on their personal values and opinions with scientific evidence, and formulating an atmosphere where they freely exchanged opinions and feedback for constructing better collective ideas.

A Relationship among Facilitating Discourse, Students' Perceived Challenge, and Learning Outcomes in an Online Science Gifted Education (온라인 영재교육에서 담화촉진, 도전감, 학습결과간의 관계)

  • Choi, Kyoung Ae;Lee, Sunghye
    • Journal of Gifted/Talented Education
    • /
    • v.26 no.3
    • /
    • pp.541-559
    • /
    • 2016
  • This study investigated a relationship among facilitating discourse, students' perceived challenge, and learning outcomes(persistent intention and learning achievement) in an online science gifted education program. Two hundreds and forty-two middle school students participated in the study. A survey questionnaire which was consisted of 6 items of facilitating discourse from teaching presence questionnaire(Shea, Swan, & Pickett, 2005) and 5 items of challenge from Student Perceptions of Classroom Quality(Gentry & Owen, 2004) was administered. First, the findings of this study showed that students' perceived facilitating discourse as a part of teaching presence was positively related to students' perceived challenge in an online course. Second, students' perceived facilitating discourse were positively related to persistent intention, but were negatively related to students' achievement. Third, students' perceived challenge was positively related to persistent intention and achievement. Finally, challenge mediated the relationship between students' perceived facilitating discourse and persistent intention, and the relationship between students' perceived facilitating discourse and students' achievement as well. This results suggested that online program should be designed to increase the levels of facilitating discourse.

Effects of the Mathematical Modeling Learning on the Word Problem Solving (수학적 모델링 학습이 문장제 해결에 미치는 효과)

  • Shin, Hyun-Yong;Jeong, In-Su
    • Education of Primary School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.107-134
    • /
    • 2012
  • The purpose of this study is to investigate the effectiveness of two teaching methods of word problems, one based on mathematical modeling learning(ML) and the other on traditional learning(TL). Additionally, the influence of mathematical modeling learning in word problem solving behavior, application ability of real world experiences in word problem solving and the beliefs of word problem solving will be examined. The results of this study were as follows: First, as to word problem solving behavior, there was a significant difference between the two groups. This mean that the ML was effective for word problem solving behavior. Second, all of the students in the ML group and the TL group had a strong tendency to exclude real world knowledge and sense-making when solving word problems during the pre-test. but A significant difference appeared between the two groups during post-test. classroom culture improvement efforts. Third, mathematical modeling learning(ML) was effective for improvement of traditional beliefs about word problems. Fourth, mathematical modeling learning(ML) exerted more influence on mathematically strong and average students and a positive effect to mathematically weak students. High and average-level students tended to benefit from mathematical modeling learning(ML) more than their low-level peers. This difference was caused by less involvement from low-level students in group assignments and whole-class discussions. While using the mathematical modeling learning method, elementary students were able to build various models about problem situations, justify, and elaborate models by discussions and comparisons from each other. This proves that elementary students could participate in mathematical modeling activities via word problems, it results form the use of more authentic tasks, small group activities and whole-class discussions, exclusion of teacher's direct intervention, and classroom culture improvement efforts. The conclusions drawn from the results obtained in this study are as follows: First, mathematical modeling learning(ML) can become an effective method, guiding word problem solving behavior from the direct translation approach(DTA) based on numbers and key words without understanding about problem situations to the meaningful based approach(MBA) building rich models for problem situations. Second, mathematical modeling learning(ML) will contribute attitudes considering real world situations in solving word problems. Mathematical modeling activities for word problems can help elementary students to understand relations between word problems and the real world. It will be also help them to develop the ability to look at the real world mathematically. Third, mathematical modeling learning(ML) will contribute to the development of positive beliefs for mathematics and word problem solving. Word problem teaching focused on just mathematical operations can't develop proper beliefs for mathematics and word problem solving. Mathematical modeling learning(ML) for word problems provide elementary students the opportunity to understand the real world mathematically, and it increases students' modeling abilities. Futhermore, it is a very useful method of reforming the current problems of word problem teaching and learning. Therefore, word problems in school mathematics should be replaced by more authentic ones and modeling activities should be introduced early in elementary school eduction, which would help change the perceptions about word problem teaching.

Conceptualization of an SSI-PCK Framework for Teaching Socioscientific Issues (과학기술 관련 사회쟁점 교육을 위한 교과교육학적 지식(SSI-PCK) 요소에 대한 탐색)

  • Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.539-550
    • /
    • 2016
  • The purpose of the study is to conceptualize SSI-PCK by identifying major components and sub-components to promote science teachers' confidence and knowledge on teaching SSIs. To achieve this, I conducted extensive literature reviews on teachers' perceptions on SSI, case studies of teachers addressing SSIs, SSI instructional strategies, etc. as well as PCK. Results indicate that SSI-PCK include six major components: 1) Orientation for Teaching SSI (OTS), 2) Knowledge of Instructional Strategies for Teaching SSI (KIS), 3) Knowledge of Curriculum (KC), 4) Knowledge of Students' SSI Learning (KSL), 5) Knowledge of Assessment in SSI Learning (KAS), and 6) Knowledge of Learning Contexts (KLC). OTS refers to teachers' instructional goals and intentions for teaching SSIs. Teachers often present a) activity-driven, b) knowledge and higher order thinking skills, c) application of science in everyday life, d) nature of science and technology, e) citizenship and f) activism orientations for teaching SSIs. KIS indicates teachers' instructional knowledge required for effectively designing and implementing SSI lessons. It includes a) SSI lesson design, b) utilizing progressive instructional strategies, and c) constructing collaborative classroom cultures. KC refers to teachers' knowledge on a) connection to science curriculum (horizontal/vertical) and b) connection to other subject matters. KSL refers to teachers' knowledge on a) learner experiences in SSI learning, b) difficulties in SSI learning, and c) SSI reasoning patterns. KAS indicates teachers' knowledge on a) dimensions of SSI learning to assess, and b) methods of assessing SSI learning. Finally, KLC refers to teachers' knowledge on the cultures of a) classrooms, b) schools, and c) community and society where they are located when teaching SSIs.