• 제목/요약/키워드: Peclet condition

검색결과 16건 처리시간 0.018초

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

토양 오염원의 이동에 관한 연구 (감쇠항이 있는 3차원 이송-확산 방정식의 수치모형 개발) (A Study on the Transport of Soil Contaminant (A Development of FDM Model for 3-D Advection-Diffusion Equation with Decay Term))

  • 김상준
    • 한국수자원학회논문집
    • /
    • 제45권2호
    • /
    • pp.179-189
    • /
    • 2012
  • 오염물질의 이동 현상을 모의하기 위하여, 감쇠항이 있는 3차원 이송-확산 방정식의 수치모형이 개발되었다. 개발된 모형은 유한차분 모형으로서 시간단계의 가중치 ${\alpha}$를 포함하는 음해법(implicit finite difference method)과, 반복법인 Gauss-Seidel SOR(successive over relaxation)이 사용되었다. 모형은 보다 단순화된 가정 하에서 존재하는 두 가지의 해석적인 해와 비교되었다. 그 결과 Peclet number가 5~20 이하에서는 수치 분산의 영향이 크지 않았고 작은 오차범위 내에서 해석적인 해와 동일하였다. 또한 가중치 ${\alpha}$의 변화에 대한 모형의 거동은 Crank-Nicolson 모형(${\alpha}$=0.5)이 fully-implicit 모형(${\alpha}$=1)보다 해석적인 해에 접근함을 보여주었다. 모형의 검증과 실효성 제고를 위하여, mass balance를 검토하였다. 즉, 이송, 확산 및 감쇠항 각각에 대한 질량 이동을 산출하였으며, 그 결과 질량 이동의 계산 오차는 약 3% 이내였다. 본 모형은 감쇠 과정이 수반되는 3차원 이송-확산의 농도분포와 질량이동을 산출할 수 있으며 다양한 경계조건을 설정함으로서 현장조건을 반영할 수 있다. 그러나본 모형은 고정격자를 기반으로하는 유한차분 모형이므로 Peclet number가 비교적 작게 나타날 수 있는 토양 및 지하수계의 오염물질 이동 등의 문제에서 유용하게 적용될 수 있을 것으로 사료된다.

AN ADAPTIVE FINITE DIFFERENCE METHOD USING FAR-FIELD BOUNDARY CONDITIONS FOR THE BLACK-SCHOLES EQUATION

  • Jeong, Darae;Ha, Taeyoung;Kim, Myoungnyoun;Shin, Jaemin;Yoon, In-Han;Kim, Junseok
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1087-1100
    • /
    • 2014
  • We present an accurate and efficient numerical method for solving the Black-Scholes equation. The method uses an adaptive grid technique which is based on a far-field boundary position and the Peclet condition. We present the algorithm for the automatic adaptive grid generation: First, we determine a priori suitable far-field boundary location using the mathematical model parameters. Second, generate the uniform fine grid around the non-smooth point of the payoff and a non-uniform grid in the remaining regions. Numerical tests are presented to demonstrate the accuracy and efficiency of the proposed method. The results show that the computational time is reduced substantially with the accuracy being maintained.

The Modified Eulerian-Lagrangian Formulation for Cauchy Boundary Condition Under Dispersion Dominated Flow Regimes: A Novel Numerical Approach and its Implication on Radioactive Nuclide Migration or Solute Transport in the Subsurface Environment

  • Sruthi, K.V.;Suk, Heejun;Lakshmanan, Elango;Chae, Byung-Gon;Kim, Hyun-su
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권2호
    • /
    • pp.10-21
    • /
    • 2015
  • The present study introduces a novel numerical approach for solving dispersion dominated problems with Cauchy boundary condition in an Eulerian-Lagrangian scheme. The study reveals the incapability of traditional Neuman approach to address the dispersion dominated problems with Cauchy boundary condition, even though it can produce reliable solution in the advection dominated regime. Also, the proposed numerical approach is applied to a real field problem of radioactive contaminant migration from radioactive waste repository which is a major current waste management issue. The performance of the proposed numerical approach is evaluated by comparing the results with numerical solutions of traditional FDM (Finite Difference Method), Neuman approach, and the analytical solution. The results show that the proposed numerical approach yields better and reliable solution for dispersion dominated regime, specifically for Peclet Numbers of less than 0.1. The proposed numerical approach is validated by applying to a real field problem of radioactive contaminant migration from radioactive waste repository of varying Peclet Number from 0.003 to 34.5. The numerical results of Neuman approach overestimates the concentration value with an order of 100 than the proposed approach during the assessment of radioactive contaminant transport from nuclear waste repository. The overestimation of concentration value could be due to the assumption that dispersion is negligible. Also our application problem confirms the existence of real field situation with advection dominated condition and dispersion dominated condition simultaneously as well as the significance or advantage of the proposed approach in the real field problem.

에탄 열분해 반응이 동반된 관형 반응기에서의 열전달 및 화학반응 특성 연구 (THE CHARACTERISTICS OF HEAT TRANSFER AND CHEMICAL REACTION FOR THERMAL CRACKING OF ETHANE IN TUBULAR REACTOR)

  • 신찬영;안준
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.43-49
    • /
    • 2016
  • Thermal cracking is commonly modeled as plug flow reaction, neglecting the lateral gradients present. In this paper, 2-dimensional computational fluid dynamics including turbulence model and molecular reaction scheme are carried out. This simulation is solved by means of coupled implicit scheme for stable convergence of solution. The reactor is modeled as an isothermal tube, whose length is 1.2 m and radius is 0.01 m, respectively. At first, The radial profile of velocity and temperature at each point are predicted in its condition. Then the bulk temperature and conversion curve along the axial direction are compared with other published data to identify the reason why discussed variations of properties are important to product yield. Finally, defining a new non-dimensional number, Effect of interaction with turbulence, heat transfer and chemical reaction are discussed for design of thermal cracking furnace.

연산자 분리기법에 의한 1차원 이송-확산방정식의 수치모형 (Numerical Model of One-Dimensional Advection-Diffusion Equation Applying Split-Operator Method)

  • 이정규;강창구;이종인
    • 한국수자원학회논문집
    • /
    • 제30권2호
    • /
    • pp.143-154
    • /
    • 1997
  • 이송항에는 5차 보간다항식을 사용하는 Holly-Pressmann 기법을, 확산항에는 Hobson 등이 제안한 양해법을 사용하는 연산자 분리기법을 사용하여 1차원 이송-확산방정식의 수치모형을 제안하였다. 제안된 모형을 검정하기 위하여 일정한 유속과 종확산계수를 갖는 순간적으로 부하된 오염원의 경우와 상류단에 연속적인 오염원을 갖는 경우에 대하여 본 모형의 해를 해석해와 기존의 모형으로부터 구한 해를 비교검토하였다. Courant 수와 Peclet 수를 가진 경우에 대한 수치해석을 통하여, 본 모형이 Courant 수가 1보다 큰 경우에 대해서도 안정된 해를 제공함을 알 수 있었으며, 해석해가 존재하는 경우에 본 모형을 적용하여 얻은 수치해와 비교한 바 전반적으로 잘 일치하였다. 본 모형의 확산항에 사용된 양해법에서는 일반적인 양해법의 단점인 계산시간간격의 제약이 상당히 완화되어 상대적으로 큰 계산시간간격에 대해서도 양호한 결과를 보였다.

  • PDF

운동자계 문제의 해석을 위한 유한요소법에 관한 연구 (The Study of Finite Element Method for Analyses of Travelling Magnetic Field Problem)

  • 장호성
    • 조명전기설비학회논문지
    • /
    • 제19권4호
    • /
    • pp.108-116
    • /
    • 2005
  • 1계 미분항이 포함되는 미분방정식의 수치해를 구하고자 할 때 중앙차분을 사용한 유한차분법이나 Galerkin법을 사용한 유한요소법은 그 해가 매우 불안하여 요소분할을 세밀하게 하여야만 해를 얻을 수 있다. 이러한 해의 불안 정성이 일어나는 이유는 대류항의 크기가 커질수록 후류에서의 경계조건이 해의 급격한 변화를 요구하는데 수치해가 급격한 변화에 적응하지 못하기 때문이다. 이러한 문제를 해결하기 위해 1970년대부터 upwind법이 개발되어 왔다. 본 논문은 1계 미분항이 표현되는 속도기전력이 발생하는 전자계 문제를 유한요소법을 이용하여 해석할 때 발생하는 해의 진동 문제를 해결하기 위해 Heinrich에 의해 제안된 upwind법을 적용하였다.

전도성 원형관 내에 안정화된 예혼합 화염의 구조와 경계 조건에 관한 이론해석 (An Analytical Study on The Structure and Boundary Conditions of The Premixed Flame Stabilized in Conductive Cylindrical Tubes)

  • 김남일
    • 한국연소학회지
    • /
    • 제11권3호
    • /
    • pp.8-17
    • /
    • 2006
  • When a flame is stabilized in a tube of a finite thickness, a conductive heat transfer through the tube significantly changes the wall temperature and affects the flame characteristics. Thus the tube length and thermal boundary conditions affect on the structure of the flame in a conductive tube. A one-dimensional analytical study was conducted by employing two energy equations for tubes and mixtures and a species equation for the mixture. Variation of the maximum temperatures and indicating displacements were observed. A parametric study on the effects of inner Peclet numbers, normalized wall conductivities, and heat transfer conditions of the tube was conducted. This study provides essential data for a more efficient computational simulation of the flame stabilized in conductive tubes.

  • PDF

혼돈적 교반에 의한 열전달 향상 (Enhancement of Heat Transfer by Chaotic Stirring)

  • 서용권
    • 설비공학논문집
    • /
    • 제6권1호
    • /
    • pp.20-28
    • /
    • 1994
  • A numerical study has been performed on enhancement of heat transfer in a forced convection of the modified driven-cavity flow which was previously found by the author to give a regular or chaotic stirring depending on the parameter value. It is found that for the present case wherein heat is transmitted between fluid and the surrounding walls, the chaotic stirring enhances the heat transfer at high Peclet numbers. The optimal condition of the flow modulation for the best heat transfer can be predicted by purely investigating the hydrodynamic facet, i.e. the stirring effect.

  • PDF

유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구 (Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow)

  • 윤익로;신승원
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.