Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.4.1087

AN ADAPTIVE FINITE DIFFERENCE METHOD USING FAR-FIELD BOUNDARY CONDITIONS FOR THE BLACK-SCHOLES EQUATION  

Jeong, Darae (Department of Mathematics Korea University)
Ha, Taeyoung (Division of Computational Sciences in Mathematics National Institute for Mathematical Sciences)
Kim, Myoungnyoun (Division of Computational Sciences in Mathematics National Institute for Mathematical Sciences)
Shin, Jaemin (Institute of Mathematical Sciences Ewha Womans University)
Yoon, In-Han (Department of Mathematics Korea University)
Kim, Junseok (Department of Mathematics Korea University)
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.4, 2014 , pp. 1087-1100 More about this Journal
Abstract
We present an accurate and efficient numerical method for solving the Black-Scholes equation. The method uses an adaptive grid technique which is based on a far-field boundary position and the Peclet condition. We present the algorithm for the automatic adaptive grid generation: First, we determine a priori suitable far-field boundary location using the mathematical model parameters. Second, generate the uniform fine grid around the non-smooth point of the payoff and a non-uniform grid in the remaining regions. Numerical tests are presented to demonstrate the accuracy and efficiency of the proposed method. The results show that the computational time is reduced substantially with the accuracy being maintained.
Keywords
Black-Scholes equation; finite difference method; far-field boundary conditions; adaptive grid; Peclet condition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Lotstedt, J. Persson, L. von Sydow, and J. Tysk, Space-time adaptive finite difference method for European multi-asset options, Comput. Math. Appl. 53 (2007), no. 8, 1159-1180.   DOI   ScienceOn
2 R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci. 4 (1973), no. 1, 141-183.   DOI   ScienceOn
3 J. Persson and L. von Sydow, Pricing European multi-asset options using a space-time adaptive FD-method, Comput. Vis. Sci. 10 (2007), no. 4, 173-183.   DOI   ScienceOn
4 O. Pironneau and F. Hecht, Mesh adaption for the Black and Scholes equations, East-West J. Numer. Math. 8 (2000), no. 1, 25-35.
5 E. Schwartz, The valuation of warrants: Implementing a new approach, J. Financ. Econ. 4 (1977), no. 1, 79-93.   DOI   ScienceOn
6 D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method, John Wiley & Sons, New York, 2000.
7 J. Topper, Financial Engineering with Finite Elements, John Wiley & Sons, New York, 2005.
8 P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993.
9 R. Windcliff, P. A. Forsyth, and R. A. Vetzal, Analysis of the stability of the linear boundary condition for the Black-Scholes equation, J. Comput. Financ. 8 (2004), 65-92.
10 S. Zhao and G. W. Wei, Option valuation by using discrete singular convolution, Appl. Math. Comput. 167 (2005), no. 1, 383-418.   DOI   ScienceOn
11 R. Zvan, P. A. Forsyth, and K. R. Vetzal, Robust numerical methods for PDE models of Asian options, J. Comput. Financ. 1 (1998), 39-78.
12 Y. Achdou and O. Pironneau, Computational Methods for Option Pricing, SIAM, Philadelphia, 2005.
13 F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Econ. 81 (1973), no. 3, 637-659.   DOI   ScienceOn
14 M. Brennan and E. Schwartz, The valuation of American put options, J. Financ. 32 (1977), no. 2, 449-462.   DOI
15 D. Jeong, Mathematical model and numerical simulation in computational finance, Ph.D. Thesis, Dep. Mathematics, Korea Univ., Korea, 2012.
16 M. Brennan and E. Schwartz, Finite difference methods and jump processes arising in the pricing of contin-gent claims: a synthesis, J. Financ. Quant. Anal. 13 (1978), no. 3, 461-474.   DOI   ScienceOn
17 G. W. Buetow and J. S. Sochacki, The trade-off between alternative finite difference techniques used to price derivative securities, Appl. Math. Comput. 115 (2000), no. 2-3, 177-190.   DOI   ScienceOn
18 C. Christara and D. M. Dang, Adaptive and high-order methods for valuing American options, J. Comput. Financ. 14 (2011), no. 4, 74-113.
19 D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, John Wiley & Sons, New York, 2006.
20 S. Figlewski and B. Gao, The adaptive mesh model: a new approach to efficient option pricing, J. Financ. Econ. 53 (1999), no. 3, 313-351.   DOI   ScienceOn
21 R. Kangro and R. Nicolaides, Far field boundary conditions for Black-Scholes equations, SIAM J. Numer. Anal. 38 (2000), no. 4, 1357-1368.   DOI   ScienceOn
22 B. J. Kim, C. Ahn, and H. J. Choe, Direct computation for American put option and free boundary using finite difference method, Jpn. J. Ind. Appl. Math. 30 (2013), no. 1, 21-37.   DOI
23 G. Linde, J. Persson, and L. von Sydow, A highly accurate adaptive finite difference solver for the Black-Scholes equation, Int. J. Comput. Math. 86 (2009), no. 12, 2104-2121.   DOI   ScienceOn
24 P. Lotstedt, S. Soderberg, A. Ramage, and L. Hemmingsson-Franden, Implicit solution of hyperbolic equations with space-time adaptivity, BIT Numer. Math. 42 (2002), no. 1, 134-158.   DOI
25 R. Geske and K. Shastri, Valuation by approximation: a comparison of alternative option valuation techniques, J. Financ. Quant. Anal. 20 (1985), no. 1, 45-71.   DOI   ScienceOn
26 J. Persson and L. von Sydow, Pricing American options using a space-time adaptive finite difference method, Math. Comput. Simulation 80 (2010), no. 9, 1922-1935.   DOI   ScienceOn