Browse > Article

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube  

Jeong Ho-Eyoul (Department of Mechanical Engineering, Chonnam National University)
Jeong Jae-Tack (Department of Mechanical Engineering, Chonnam National University)
Publication Information
Journal of Mechanical Science and Technology / v.20, no.1, 2006 , pp. 158-166 More about this Journal
Abstract
Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.
Keywords
Graetz Problem; Microtube; Slip Boundary Condition; Viscous Dissipation; Axial Conduction; Eigenvalue Problem; Knudsen Number; Peclet Number; Brinkman Number;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 Sellars, J. R., Tribus, M. and Klein, J. S., 1956, 'Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit-the Graetz Problem Extended,' Trans. ASME, Vol. 78, pp.441-448
2 Shah, R. K. and London, A. L., 1978, Laminar Flow Forced Convection in Ducts, Academic Press, New York, pp. 109-111
3 Tuckerman, D. B. and Pease, R. F. W., 1981, 'High Performance Heat Sinking for VLSI, IEEE Electron Device Letters,' Vol. EDL-2 No. 5, pp. 126-129
4 Tunc, G. and Bayazitoglu, Y., 2001, 'Heat Transfer in Microtubes with Viscous Dissipation,' Int. J. Heat Mass Transfer, Vol. 44, pp. 2395-2403   DOI   ScienceOn
5 Choi, S. B., Barron, R. F. and Warrington, R. O., 1991, 'Fluid Flow and Heat Transfer in Microtubes, In Micromechanical Sensors, Actuators, and System,' ASME DSC 32, pp. 123-134
6 Graetz, L. and Uber die Warmeleitungsfa-higheit von Flussingkeiten, 1883, Annalen der Physik und Chemie part 1, Vol. 18, pp.79-94
7 Graetz, L. and Uber die Warmeleitungsfa-higheit von Flussingkeiten, 1885, Annalen der Physik und Chemie part 2, Vol. 25, pp. 337-357
8 Karniadakis, G. E. and Beskok, A., 2002, Micro flows Fundamentals and Simulation, Springer-Verlag, New York, pp. 45-53
9 Nield, D. A., Kuznetsov, A. V. and Xiong, M., 2003, 'Thermally Developing Forced Convection in a Porous Medium: Parallel Plate Channel with Walls at Uniform Temperature, with Axial Conduction and Viscous Dissipation Effects,' Int. J. Heat Mass Transfer, Vol. 46, pp.643-651   DOI   ScienceOn
10 Lahjomri, J. and Oubarra, A., 1999, 'Analytical Solution of the Graetz Problem with Axial Conduction,' ASME J. Heat Transfer, Vol. 121, pp. 1078-1083   DOI
11 Ou, J. W. and Cheng, K. C., 1974, 'Viscous Dissipation Effects on Thermal Entrance Heat Transfer in Laminar and Turbulent Pipe Flows with Uniform wall Temperature,' Am. Inst. Aeronaut. Astron., Pap.74-743 or Am. Soc. Mech. Eng., Pap. 74-HT-50
12 Barron, R. F., Wang, X., Ameel, T. A. and Warrington, R.O., 1997, 'The Graetz Problem Extended to Slip-Flow,' Int. J. Heat Mass Transfer, Vol. 40(8), pp. 1817-1823   DOI   ScienceOn
13 Ameel, T. A., Barron, R. F., Wang, X. and Warrington, R.O., 1997, 'Laminar Forced Convection in a Circular tube with Constant Heat Flux and Slip Flow,' Microscale Thermophys. Eng., Vol. 1(4), pp. 303-320   DOI   ScienceOn