• 제목/요약/키워드: Pb-free soldering

검색결과 44건 처리시간 0.027초

WETTING PROPERTIES AND INTERFACIAL REACTIONS OF INDIUM SOLDER

  • Kim, Dae-Gon;Lee, Chang-Youl;Hong, Tae-Whan;Jung, Seung-Boo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.475-480
    • /
    • 2002
  • The reliability of the solder joint is affected by type and extent of the interfacial reaction between solder and substrates. Therefore, understanding of intermetallic compounds produced by soldering in electronic packaging is essential. In-based alloys have been favored bonding devices that demand low soldering temperatures. For photonic and fiber optics packaging, m-based solders have become increasingly attractive as a soldering material candidate due to its ductility. In the present work, the interfacial reactions between indium solder and bare Cu Substrate are investigated. For the identification of intermetallic compounds, both Scanning Electron Microscopy(SEM) and X-Ray Diffraction(XRD) were employed. Experimental results showed that the intermetallic compounds, such as Cu$_{11}$In$_{9}$ was observed for bare Cu substrate. Additionally, the growth rate of these intermetallic compounds was increased with the reaction temperature and time. We found that the growth of the intermetallic compound follows the parabolic law, which indicates that the growth is diffusion-controlled.d.

  • PDF

Si-wafer의 플럭스 리스 플라즈마 무연 솔더링 -플라즈마 클리닝의 영향- (Fluxless Plasma Soldering of Pb-free Solders on Si-wafer -Effect of Plasma Cleaning -)

  • 문준권;김정모;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.77-85
    • /
    • 2004
  • 플라즈마 리플로우 솔더링에서 솔더볼의 접합성을 향상시키기 위해 UBM(Under Bump Metallization)을 Ar-10vol%$H_2$플라즈마로 클리닝하는 방법을 연구하였다. UBM층은 Si 웨이퍼 위에 Au(두께; 20 nm)/ Cu(4 $\mu\textrm{m}$)/ Ni(4 $\mu\textrm{m}$)/ Al(0.4 $\mu\textrm{m}$)을 웨이퍼 측으로 차례대로 증착하였다. 무연 솔더로는Sn-3.5wt%Ag, Sn-3.5wt%Ag-0.7wt%Cu를 사용하였고 Sn-37wt%Pb를 비교 솔더로 사용하였다. 지름이500 $\mu\textrm{m}$인 솔더 볼을 플라즈마 클리닝 처리를 한 UBM과 처리하지 않은 UBM위에 놓고, Ar-10%$H_2$플라즈마 분위기에서 플럭스 리스 솔더링하였다. 이 결과는 플럭스를 사용하여 대기 중에서 열풍 리플로우한 결과와 비교하였다. 실험 결과, 플라즈마 클리닝 후 플라즈마 리플로우한 솔더의 퍼짐율이 클리닝 하지 않은 플라즈마 솔더링보다 20-40%정도 더 높았다. 플라즈마 클리닝 후 플라즈마 리플로우한 솔더 볼의 전단 강도는 약58-65MPa로, 플라즈마 클리닝 하지 않은 플라즈마 리플로우보다 60-80%정도 높았으며, 플럭스를 사용한 열풍 리플로우보다는 15-35%정도 높았다. 따라서 Ar-10%$H_2$가스를 사용하여 UBM에 플라즈마 클리닝하는 공정은 플라즈마 리플로우 솔더 볼의 접합강도를 향상시키는데 상당한 효과가 있는 것으로 확인되었다.

  • PDF

자동차용 파워 모듈 패키징의 은 소재를 이용한 접합 기술 (A Review of Ag Paste Bonding for Automotive Power Device Packaging)

  • 노명훈;;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.15-23
    • /
    • 2015
  • Lead-free bonding has attracted significant attention for automotive power device packaging due to the upcoming environmental regulations. Silver (Ag) is one of the prime candidates for alternative of high Pb soldering owing to its superior electrical and thermal conductivity, low temperature sinterability, and high melting temperature after bonding. In this paper, the bonding technology by Ag paste was introduced. We classified into two Ag paste bonding according to applied pressure, and each bonding described in detail including recent studies.

Sn-Ag-Cu-X 무연솔더로 솔더링 된 접합부의 진동파괴 거동 (Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering)

  • 진상훈;강남현;조경목;이창우;홍원식
    • Journal of Welding and Joining
    • /
    • 제30권2호
    • /
    • pp.65-69
    • /
    • 2012
  • Environmental and health concerns over the lead have led to investigation of the alternative Pb-free solders to replace commonly used Pb-Sn solders in microelectronic packaging application. The leading candidates for lead-free solder alloys are presently the near eutectic Sn-Ag-Cu alloys. Therefore, extensive studies on reliability related with the composition have been reported. However, the insufficient drop property of the near eutectic Sn-Ag-Cu alloys has demanded solder compositions of low Ag content. In addition, the solder interconnections in automobile applications like a smart box require significantly improved vibration resistance. Therefore, this study investigated the effect of alloying elements (Ag, Bi, In) on the vibration fatigue strength. The vibration fatigue was conducted in 10~1000Hz frequency and 20Grms. The interface of the as-soldered cross section close to the Cu pad indicated the intermetallic compound ($Cu_6Sn_5$) regardless of solder composition. The type and thickness of IMC was not significantly changed after the vibration test. It indicates that no thermal activities occurred significantly during vibration. Furthermore, as a function of alloying composition, the vibration crack path was investigated with a focus on the IMCs. Vibration crack was initiated from the fillet surface of the heel for QFP parts and from the plating layer of chip parts. Regardless of the solder composition, the crack during a vibration test was propagated as same as that during a thermal fatigue test.

${\mu}BGA$ 패키지에서 솔더 볼의 초기 접합강도와 금 확산에 관한 연구 (A Study on the Initial Bonding Strength of Solder Ball and Au Diffusion at Micro Ball Grid Array Package)

  • 김경섭;이석;김헌희;윤준호
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.311-316
    • /
    • 2001
  • This paper presents that the affecting factors to the solderability and initial reliability. It is the factor that the coefficient of thermal expansion between package and PCB(Printed Circuit Board), the quantity of solder paste and reflow condition, and Au thickness of the solder ball pad on polyimide tape. As the reflow soldering condition for 48 ${\mu}BGA$ is changed, it is estimated that the quantity of Au diffusion at eutectic Sn-Pb solder surface and initial bonding strength of eutectic Sn-Pb solder and lead free solder. It is the result that quantitative measurement of Au diffusion quantity is difficult, but the shear strength of eutectic Sn-Pb solder joint is 842 mN at first reflow and increases 879 mN at third reflow. The major failure mode in solder is judged solder fracture. So, Au diffusion quantity is more affected by reflow temperature than by the reflow times.

  • PDF

Sn-3.0 Ag-0.5 Cu/OSP 무연솔더 접합계면의 접합강도 변화에 따른 전자부품 열충격 싸이클 최적화 (Thermal Shock Cycles Optimization of Sn-3.0 Ag-0.5 Cu/OSP Solder Joint with Bonding Strength Variation for Electronic Components)

  • 홍원식;김휘성;송병석;김광배
    • 한국재료학회지
    • /
    • 제17권3호
    • /
    • pp.152-159
    • /
    • 2007
  • When the electronics are tested with thermal shock for Pb-free solder joint reliability, there are temperature conditions with use environment but number of cycles for test don't clearly exist. To obtain the long term reliability data, electronic companies have spent the cost and times. Therefore this studies show the test method and number of thermal shock cycles for evaluating the solder joint reliability of electronic components and also research bonding strength variation with formation and growth of intermetallic compounds (IMC). SMD (surface mount device) 3216 chip resistor and 44 pin QFP (quad flat package) was utilized for experiments and each components were soldered with Sn-40Pb and Sn-3.0 Ag-0.5 Cu solder on the FR-4 PCB(printed circuit board) using by reflow soldering process. To reliability evaluation, thermal shock test was conducted between $-40^{\circ}C\;and\;+125^{\circ}C$ for 2,000 cycles, 10 minute dwell time, respectively. Also we analyzed the IMCs of solder joint using by SEM and EDX. To compare with bonding strength, resistor and QFP were tested shear strength and $45^{\circ}$ lead pull strength, respectively. From these results, optimized number of cycles was proposed with variation of bonding strength under thermal shock.

SnCuX계 솔더를 이용한 무연 솔더링에서의 계면구조와 기계적 특성 (The micorstructure and strength of SnCuX Solder joint)

  • 이재식;박지호;문준권;정재필
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 추계기술심포지움논문집
    • /
    • pp.55-58
    • /
    • 2002
  • The possibility of SnCuX Solder as alternative for Pb-free Solder have been investigated in this study. SnCuX Solder balls(500${\mu}{\textrm}{m}$) were placed on Si-wafer which is Al/Ni/Cu(500nm/$4{\mu}{\textrm}{m}$/$4{\mu}{\textrm}{m}$)UBM layer. After reflow soldering at $250^{\circ}C$, shear strength and microstructure were analyzed. The results showed that the shear strength(500gf) of SnCuX was higher than that of SnCuX at $230^{\circ}C$ and $Cu_6Sn_5$ intermetallic compounds were formed between Cu and SnCuX Solder layers

  • PDF

Low Ag 조성의 Sn-0.3Ag-0.7Cu 및 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 열충격 신뢰성 (Thermal Shock Reliability of Low Ag Composition Sn-0.3Ag-0.7Cu and Near Eutectic Sn-3.0Ag-0.5Cu Pb-free Solder Joints)

  • 홍원식;오철민
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.842-851
    • /
    • 2009
  • The long-term reliability of Sn-0.3wt%Ag-0.7wt%Cu solder joints was evaluated and compared with Sn-3.0wt%Ag-0.5wt%Cu under thermal shock conditions. Test vehicles were prepared to use Sn-0.3Ag-0.7Cu and Sn-3.0Ag-0.5Cu solder alloys. To compare the shear strength of the solder joints, 0603, 1005, 1608, 2012, 3216 and 4232 multi-layer ceramic chip capacitors were used. A reflow soldering process was utilized in the preparation of the test vehicles involving a FR-4 material-based printed circuit board (PCB). To compare the shear strength degradation following the thermal shock cycles, a thermal shock test was conducted up to 2,000 cycles at temperatures ranging from $-40^{\circ}C$ to $85^{\circ}C$, with a dwell time of 30 min at each temperature. The shear strength of the solder joints of the chip capacitors was measured at every 500 cycles in each case. The intermetallic compounds (IMCs) of the solder joint interfaces werealso analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the reliability of Sn-0.3Ag-0.7Cu solder joints was very close to that of Sn-3.0Ag-0.5Cu. Consequently, it was confirmed that Sn-0.3Ag-0.7Cu solder alloy with a low silver content can be replaced with Sn-3.0Ag-0.5Cu.

Sn-3.0Ag-0.5Cu 솔더링에서 플럭스 잔사가 전기화학적 마이그레이션에 미치는 영향 (Flux residue effect on the electrochemical migration of Sn-3.0Ag-0.5Cu)

  • 방정환;이창우
    • Journal of Welding and Joining
    • /
    • 제29권5호
    • /
    • pp.95-98
    • /
    • 2011
  • Recently, there is a growing tendency that fine-pitch electronic devices are increased due to higher density and very large scale integration. Finer pitch printed circuit board(PCB) is to be decrease insulation resistance between circuit patterns and electrical components, which will induce to electrical short in electronic circuit by electrochemical migration when it exposes to long term in high temperature and high humidity. In this research, the effect of soldering flux acting as an electrical carrier between conductors on electrochemical migration was investigated. The PCB pad was coated with OSP finish. Sn3.0Ag0.5Cu solder paste was printed on the PCB circuit and then the coupon was treated by reflow process. Thereby, specimen for ion migration test was fabricated. Electrochemical migration test was conducted under the condition of DC 48 V, $85^{\circ}C$, and 85 % relative humidity. Their life time could be increased about 22% by means of removal of flux. The fundamentals and mechanism of electrochemical migration was discussed depending on the existence of flux residues after reflow process.

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF