• 제목/요약/키워드: Patterned substrate

검색결과 312건 처리시간 0.029초

Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석 (Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD)

  • 김선운;김제원
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.

습식식각 방법으로 제작한 패턴 형성 사파이어 기판을 가지는 GaN계 청색 LED (GaN Base Blue LED on Patterned Sapphire Substrate by Wet Etching)

  • 김도형;이용곤;유순재
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.7-11
    • /
    • 2011
  • Sapphire substrate was patterned by a selective chemical wet etching technique, and GaN/InGaN structures were grown on this substrate by MOVPE (Metal Organic Vapor Phase Epitaxy). The surface of grown GaN on patterned sapphire substrate (PSS) has good morphology and uniformity. The patterned sapphire substrate LED showed better light output than conventional LED that improvement 50%. We think these results come from enhancement of internal quantum efficiency by decrease of threading dislocation and increase of light extraction efficiency. Also these LED showed more uniform emission distribution in angle than conventional LED.

시뮬레이션을 이용한 PSS (patterned sapphire substrate) LED의 광추출 효율 평가 (The evaluation of the extraction efficiency of PSS(patterned sapphire substrate) LED using simulation)

  • 이진복;윤상호;김동운;최창환
    • 대한전자공학회논문지SD
    • /
    • 제44권4호
    • /
    • pp.91-96
    • /
    • 2007
  • 사파이어 기반의 GaN LED의 광추출 효율을 시뮬레이션을 이용하여 정량적으로 평가하였다. 각각의 LED는 ray-tracing 시뮬레이션을 이용하여 광추출 효율을 계산하였다. 본 연구에는 PSS(patterned sapphire substrate) LED와 flat LED의 비교 분석을 통하여, LED에서의 사파이어 기판의 패턴이 광추출에 미치는 영향을 설명하였다. 또한, 각각의 칩에서 반사막의 반사도가 광추출에 미치는 영향을 분석하고, 그 원인을 시뮬레이션을 이용하여 설명하였다. 한편, 사파이어 패턴에 의한 광추출효율의 변화 효과를 공기(air)와 실리콘(silicone) 분위기에서 시뮬레이션을 수행하였다. 이러한 시뮬레이션 기술을 통해 광추출 효율의 개선 정도를 정량적으로 평가할 수 있었으며, 이러한 연구가 향후 고효율 LED 개발에 도움을 줄 것으로 판단된다.

SERS Immunoassay Using Microcontact Printing for Application of Sensitive Biosensors

  • Hong, Won-Jin;Seo, Hyeong-Kuyn;Jung, Young-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4281-4285
    • /
    • 2011
  • We introduced a promising patterned substrate by using a microcontact printing method that can be used for SERS immunoassays based on antigen-antibody binding. SERS spectrum of the Raman reporter with antibody, which is rhodamine 6G (R6G) adsorbed on colloidal gold nanoparticles, was observed only for the surfaces in which prostate-specific antigen (PSA) is present on the substrate that is attached to an immobilized layer of antibody on the gold nanoparticles layer of the patterned substrate. Raman mapping images clearly showed that the antibodies on the Raman reporter were successfully and selectively conjugated with the antigen on the patterned substrate. This method could be potentially extended to multi-protein detections and ultrasensitive biosensors.

Luminescence Properties of Blue Light-emitting Diode Grown on Patterned Sapphire Substrate

  • Wang, Dang-Hui;Xu, Tian-Han;Wang, Lei
    • Current Optics and Photonics
    • /
    • 제1권4호
    • /
    • pp.358-363
    • /
    • 2017
  • In this study, we present a detailed investigation of luminescence properties of a blue light-emitting diode using InGaN/GaN (indium component is 17.43%) multiple quantum wells as the active region grown on patterned sapphire substrate by low-pressure metal-organic chemical vapor deposition (MOCVD). High-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman scattering (RS) and photoluminescence (PL) measurements are employed to study the crystal quality, the threading dislocation density, surface morphology, residual strain existing in the active region and optical properties. We conclude that the crystalline quality and surface morphology can be greatly improved, the red-shift of peak wavelength is eliminated and the superior blue light LED can be obtained because the residual strain that existed in the active region can be relaxed when the LED is grown on patterned sapphire substrate (PSS). We discuss the mechanisms of growing on PSS to enhance the superior luminescence properties of blue light LED from the viewpoint of residual strain in the active region.

Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate

  • Cho, Jumi;Jung, Daesung;Kim, Yooseok;Song, Wooseok;Adhikari, Prashanta Dhoj;An, Ki-Seok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • 제24권3호
    • /
    • pp.53-59
    • /
    • 2015
  • The field-effect transistors (FETs) with a graphene-based p-n junction channel were fabricated using the patterned self-assembled monolayers (SAMs). The self-assembled 3-aminopropyltriethoxysilane (APTES) monolayer deposited on $SiO_2$/Si substrate was patterned by hydrogen plasma using selective coating poly-methylmethacrylate (PMMA) as mask. The APTES-SAMS on the $SiO_2$ surface were patterned using selective coating of PMMA. The APTES-SAMs of the region uncovered with PMMA was removed by hydrogen plasma. The graphene synthesized by thermal chemical vapor deposition was transferred onto the patterned APTES-SAM/$SiO_2$ substrate. Both p-type and n-type graphene on the patterned SAM/$SiO_2$ substrate were fabricated. The graphene-based p-n junction was studied using Raman spectroscopy and X-ray photoelectron spectroscopy. To implement low voltage operation device, via ionic liquid ($BmimPF_6$) gate dielectric material, graphene-based p-n junction field effect transistors was fabricated, showing two significant separated Dirac points as a signature for formation of a p-n junction in the graphene channel.

패턴된 기판에 금속 배선 형성 (Metallization on Patterned Substrate)

  • 김남석;강탁;남승우;박용수
    • 한국표면공학회지
    • /
    • 제28권5호
    • /
    • pp.309-319
    • /
    • 1995
  • The substrate patterned with the dry film has the cavity which has the $90^{\circ}$ wall angle. Electroplating Cu on this patterned substrate has the differrent shape history with the electrochemical parameters. By potential theory model, the reason of the variation of the shape change with the these parameters was investigated. The shape history could be explained by the current flow and the correlated area effects. By embedding the Ni layer between the Cu layers, shape history with the time was obtained experimentally and the results was compared with the numerical analysis by BEM. The adhesive Cr-Cu film in TAB application was etched with the various condition. The best condition for the etchant of the Cr-Cu film was found.

  • PDF

LED용 사파이어 기판의 고효율 패턴 설계 (Design of Structure for High-Efficiency LEDs on Patterned Sapphire Substrate)

  • 강호주;송희영;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제18권4호
    • /
    • pp.91-95
    • /
    • 2011
  • GaN 기반의 LED에서 광 추출 효율을 정량적으로 분석하였다. Ray-Tracing기반의 시뮬레이션을 이용하여 사파이어 기판에 형성된 패턴의 형태, 크기, 깊이, 간격들을 분석하여 최적의 패턴 요소들을 도출하였다. 시뮬레이션의 결과로 최적의 패턴 형태는 반구 형태에서 높은 광 추출 효율을 보였다. 일반적인 패턴이 없는 사파이어 기판을 사용한 LED의 광 추출 효율보다 반구 형태의 패턴을 가진 사파이어 기판에서 약 40% 향상된 광 추출 효율을 보였다.

Chemical Solution Deposition of PZT/Oxide Electrode Thin Film Capacitors and Their Micro-patterning by using SAM

  • Suzuki, Hisao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.907-912
    • /
    • 2005
  • Micro-patterns of $Pb(Zr_{0.53}Ti_{0.47})O_3$, PZT, thin films with a MPB composition were deposited on $Pt/Ti/SiO_2/Si$ substrate from molecular-designed PZT precursor solution by using self-assembledmonolayer(SAM) as a template. This method includes deposition of SAM followed by the optical etching by exposing the SAM to the UV-light, leading to the patterned SAM as a selective deposition template. The pattern of SAM was formed by irradiating UV-light to the SAM on a substrate and/or patterned PZT thin film through a metal mask for the selective deposition of patterned PZT or lanthanum nickel oxide (LNO) precursor films from alkoxide-based precursor solutions. As a result, patterned ferroelectric PZT and PZT/LNO thin film capacitors with good electrical properties in micrometer size could be successfully deposited.

  • PDF

UV를 사용한 SAMs 패터닝과 PEDOT의 선택적 증착에 관한 연구 (Patterning of poly(3,4-ethylenedioxythiophene)(PEDOT) Thin Films by Using Self-assembled Monolayers(SAMs) Patterns Formed by Ultra-violet(UV) Lithography)

  • 권태욱;이정길;이재갑
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.619-623
    • /
    • 2006
  • Selective vapor deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT), thin films has been carried out on self assembled monolayers patterned oxide substrate. Since the 3,4-ethylenedioxythiophene(EDOT) monomer can be polymerized only in the presence of oxidant such as $FeCl_3$, the PEDOT thin film is selectively deposited on patterned $FeCl_3$, which only adsorbs on the partly removed SAMs region due to the inability of $FeCl_3$ to adsorb on SAMs. Therefore, the partly removed SAMs can act as an adsorption layer for the $FeCl_3$ and also as a glue layer for the deposition of PEDOT, resulting in the significantly increased adhesion of PEDOT to $SiO_2$ substrate. The use of UV lithography and Cr patterned quartz mask provided the formation of SAMs patterns on oxide substrates, which allowed for the selective deposition of conductive PEDOT thin films.$^{oo}The$ new process was successfully developed for the selective deposition of PEDOT thin films on SAMs patterned oxide substrate, providing a new way for the patterning of vapor phase deposition of PEDOT thin films with accurate alignment and addressing the inherent adhesion issues between PEDOT and dielectrics.