Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.10.619

Patterning of poly(3,4-ethylenedioxythiophene)(PEDOT) Thin Films by Using Self-assembled Monolayers(SAMs) Patterns Formed by Ultra-violet(UV) Lithography  

Kwon, T.W. (School of Advanced Materials Engineering, Kookmin University)
Lee, J. (School of Advanced Materials Engineering, Kookmin University)
Lee, J.G. (School of Advanced Materials Engineering, Kookmin University)
Publication Information
Korean Journal of Materials Research / v.16, no.10, 2006 , pp. 619-623 More about this Journal
Abstract
Selective vapor deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT), thin films has been carried out on self assembled monolayers patterned oxide substrate. Since the 3,4-ethylenedioxythiophene(EDOT) monomer can be polymerized only in the presence of oxidant such as $FeCl_3$, the PEDOT thin film is selectively deposited on patterned $FeCl_3$, which only adsorbs on the partly removed SAMs region due to the inability of $FeCl_3$ to adsorb on SAMs. Therefore, the partly removed SAMs can act as an adsorption layer for the $FeCl_3$ and also as a glue layer for the deposition of PEDOT, resulting in the significantly increased adhesion of PEDOT to $SiO_2$ substrate. The use of UV lithography and Cr patterned quartz mask provided the formation of SAMs patterns on oxide substrates, which allowed for the selective deposition of conductive PEDOT thin films.$^{oo}The$ new process was successfully developed for the selective deposition of PEDOT thin films on SAMs patterned oxide substrate, providing a new way for the patterning of vapor phase deposition of PEDOT thin films with accurate alignment and addressing the inherent adhesion issues between PEDOT and dielectrics.
Keywords
PEDOT; SAMs; Selective deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Gao, A. J. Heeger, J. Y. Lee and C. Y. Kim, Synth. Met., 82, 221 (1996)   DOI   ScienceOn
2 Y. Gao, G. Yu, C. Zhang, R. Menon and A. J. Heeger, Synth. Met., 87, 171 (1997)   DOI   ScienceOn
3 J. C. Scott, S. A. Carter, S. Karg and M. Angelopoulos, Synth. Met., 85, 1197 (1997)   DOI   ScienceOn
4 S. Cho, S. H. Park and K. J. Lee, J. Korean Phys. Soc., 47, 474 (2005)
5 Handbook of Conductive Molecules and Polymers, H. S. Nalwa, Editor, Vol. 1-4, Wiley, New York (1997)
6 H. Yoneyama, K. Wakamoto and H. J. Tamura, J. Electrochem. Soc., 32, 2414 (1985)   DOI
7 K. Kaneto, M. Maxfield, D. P. Nairns, A. G. MacDiarmid and A. J. Heeger, J. Chem. Soc., 78, 3417 (1982)
8 Roncali, J. Chem. Rev., 92, 711 (1992)   DOI
9 D. Hohnholz, H. Okuzaki and A. G. MacDiarmid, Adv. Func. Mat., 15, 51 (2005)   DOI   ScienceOn
10 A. Baba, J. Lubben, K. Tamada and W. Knoll, Langmuir, 19, 9058 (2003)   DOI   ScienceOn
11 D. M. De Leeuw, P. A. Kraakman, P. E. G. Bongaerts, C. M. J. Mutsaers and B. B. M. Klaassen, Synth. Met., 66, 263 (1994)   DOI   ScienceOn
12 G. Gustafsson, Y. Cao, G. M. Tracy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature, 357, 447 (1993)
13 J. W. Thackeray, H. S. White and M. S. Wrighton, J. Phys. Chem., 89, 5133 (1985)   DOI