• Title/Summary/Keyword: Pathogenicity

Search Result 1,342, Processing Time 0.033 seconds

Genomic Analysis of the Carrot Bacterial Blight Pathogen Xanthomonas hortorum pv. carotae in Korea

  • Mi-Hyun Lee;Sung-Jun Hong;Dong Suk Park;Hyeonheui Ham;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.409-416
    • /
    • 2023
  • Bacterial leaf blight of carrots caused by Xanthomonas hortorum pv. carotae (Xhc) is an important worldwide seed-borne disease. In 2012 and 2013, symptoms similar to bacterial leaf blight were found in carrot farms in Jeju Island, Korea. The phenotypic characteristics of the Korean isolation strains were similar to the type strain of Xhc. Pathogenicity showed symptoms on the 14th day after inoculation on carrot plants. Identification by genetic method was multi-position sequencing of the isolated strain JJ2001 was performed using four genes (danK, gyrB, fyuA, and rpoD). The isolated strain was confirmed to be most similar to Xhc M081. Furthermore, in order to analyze the genetic characteristics of the isolated strain, whole genome analysis was performed through the next-generation sequencing method. The draft genome size of JJ2001 is 5,443,372 bp, which contains 63.57% of G + C and has 4,547 open reading frames. Specifically, the classification of pathovar can be confirmed to be similar to that of the host lineage. Plant pathogenic factors and determinants of the majority of the secretion system are conserved in strain JJ2001. This genetic information enables detailed comparative analysis in the pathovar stage of pathogenic bacteria. Furthermore, these findings provide basic data for the distribution and diagnosis of Xanthomonas hortorum pv. carotae, a major plant pathogen that infects carrots in Korea.

Re-identification of Colletotrichum acutatum Species Complex in Korea and Their Host Plants

  • Le Dinh Thao;Hyorim Choi;Yunhee Choi;Anbazhagan Mageswari;Daseul Lee;Seung-Beom Hong
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.384-396
    • /
    • 2023
  • Colletotrichum acutatum species complex is one of the most important groups in the genus Colletotrichum with a high species diversity and a wide range of host plants. C. acutatum and related species have been collected from different plants and locations in Korea and deposited into the Korean Agricultural Culture Collection (KACC), National Institute of Agricultural Sciences since the 1990s. These fungal isolates were previously identified based mainly on morphological characteristics, and a limitation of molecular data was provided. To confirm the identification of species, 64 C. acutatum species complex isolates in KACC were used in this study for DNA sequence analyses of six loci: nuclear ribosomal internal transcribed spacers (ITS), betatubulin 2 (TUB2), histone-3 (HIS3), glyceraldehyde3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), and actin (ACT). The molecular analysis revealed that they were identified in six different species of C. fioriniae (24 isolates), C. nymphaeae (21 isolates), C. scovillei (12 isolates), C. chrysanthemi (three isolates), C. lupini (two isolates), and C. godetiae (one isolate), and a novel species candidate. We compared the hosts of KACC isolates with "The List of Plant Diseases in Korea", previous reports in Korea and global reports and found that 23 combinations between hosts and pathogens could be newly reported in Korea after pathogenicity tests, and 12 of these have not been recorded in the world.

The change of Phytophthora infestans Populations in South Korea using Traditional Markers and Genome Analyses

  • Do Hee Kwon;Jin Hee Seo;Yong Ik Jin;Gun Ho Jung;Jang Gyu Choi;Gyu Bin Lee;Kwang Ryong Jo;Jaeyoun Yi;Hwang Bae Sohn;Young Eun Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.257-257
    • /
    • 2022
  • Late blight, caused by the hemibiotrophic oomycete pathogen Phytophthora infestans, has been the most important disease limiting potato production worldwide. P. infestans undergo major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to divide the 86 South Korea isolates into six clonal lineages: KR_1_A1, KR_2_A2, SIB-1, US-11, SIB-1 like, and KR-2 like. We documented the emergence of a new lineage, termed SIB-1 like, and KR-2 like, and their rapid replacement of other lineages to exceed 35% of the pathogen population across South Korea. Genome analyses of the Korean P. infestans populations revealed extensive genetic polymorphism, particularly in effector genes. Importantly, SIB-1 like isolates carry an intact Avr8 effector gene that triggers resistance in potato carrying the corresponding R immune receptor gene R8 cloned from Solarium demissum. These findings point toward a strategy for deploying genetic resistance to mitigate the impact of the SIB-1 like lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics. Further study is being done on pathogenicity of the SIB-1 like isolates on cultivated potatoes and changes in expression patterns of disease effector genes within the SIB-1 like isolates

  • PDF

Distribution and Pathogenicity of Fusarium Species Associated with Soybean Root Rot in Northeast China

  • Yingying Liu;Xuena Wei;Feng Chang;Na Yu;Changhong Guo;Hongsheng Cai
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.575-583
    • /
    • 2023
  • Fusarium root rot is an increasingly severe problem in soybean cultivation. Although several Fusarium species have been reported to infect soybean roots in Heilongjiang province, their frequency and aggressiveness have not been systematically quantified in the region. This study aimed to investigate the diversity and distribution of Fusarium species that cause soybean root rot in Heilongjiang province over two years. A total of 485 isolates belonging to nine Fusarium species were identified, with F. oxysporum and F. solani being the most prevalent. Pot experiments were conducted to examine the relative aggressiveness of different Fusarium species on soybean roots, revealing that F. oxysporum and F. solani were the most aggressive pathogens, causing the most severe root rot symptoms. The study also assessed the susceptibility of different soybean cultivars to Fusarium root rot caused by F. oxysporum and F. solani. The results indicated that the soybean cultivar DN51 exhibited the most resistance to both pathogens, indicating that it may possess genetic traits that make it less susceptible to Fusarium root rot. These findings provide valuable insights into the diversity and distribution of Fusarium species that cause soybean root rot and could facilitate the development of effective management strategies for this disease.

Detection and characterization of potential virulence determinants in Staphylococcus pseudintermedius and S. schleiferi strains isolated from canine otitis externa in Korea

  • Gi Yong Lee;Soo In Lee;Ji Heon Park;Sun Do Kim;Geun-Bae Kim;Soo-Jin Yang
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.85.1-85.13
    • /
    • 2023
  • Background: A recent increase in the occurrence of canine skin and soft tissue infections, including otitis externa and pyoderma, caused by antimicrobial-resistant Staphylococcus pseudintermedius and S. schleiferi has become a significant public and veterinary health issues. Objective: We investigated the virulence potentials associated with the occurrence of canine otitis externa in S. pseudintermedius and S. schleiferi. Methods: In this study, the prevalence of genes encoding leukocidins, exfoliative toxins, and staphylococcal enterotoxins (SEs) was investigated using previously characterized S. pseudintermedius (n = 26) and S. schleiferi (n = 19) isolates derived from canine otitis externa. Susceptibility to cathelicidins (K9CATH and PMAP-36) and hydrogen peroxide (H2O2) was also examined in both staphylococcal species. Results: A high prevalence of genes encoding leukocidins (lukS/F-I, lukS1/F1-S, and lukS2/F2-S), exfoliative toxins (siet, expB, and sset), and SEs was identified in both S. pseudintermedius and S. schleiferi isolates. Notably, S. pseudintermedius isolates possessed higher number of SE genes, especially newer SE genes, than S. schleiferi isolates harboring egc clusters. Although no significant differences in susceptibility to K9CATH and H2O2 were observed between the two isolate groups, S. pseudintermedius isolates exhibited enhanced resistance to PMAP-36 compared to S. schleiferi isolates. Conclusions: These findings suggest that high a prevalence of various toxin genes together with enhanced resistance to cathelicidins may contribute to the pathogenicity of S. pseudintermedius and S. schleiferi in canine cutaneous infections.

Whole genome sequence of Staphylococcus aureus strain RMI-014804 isolated from pulmonary patient sputum via next-generation sequencing technology

  • Ayesha, Wisal;Asad Ullah;Waheed Anwar;Carlos M. Morel;Syed Shah Hassan
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.34.1-34.10
    • /
    • 2023
  • Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.

Characterizations of four freshwater amoebae including opportunistic pathogens newly recorded in the Republic of Korea

  • Hyeon Been Lee;Jong Soo Park
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.118-133
    • /
    • 2023
  • Background: Free-living amoebae (FLA) are widely distributed in freshwater, seawater, soil, and extreme environments, and play a critical role as feeders on diverse preys in the ecosystem. Also, some FLA can become opportunistic pathogens in animals including humans. The taxa Amoebozoa and Heterolobosea are important amoeboid groups associated with human pathogens. However, the identification and habitat of amoebae belonging to Amoebozoa and Heterolobosea remain poorly reported in the Republic of Korea. This study highlights the first record for identification and source of four amoebae including putative pathogens in the Republic of Korea. Results: In the present study, four previously reported FLA were isolated from freshwaters in Sangju Gonggeomji Reservoir (strain GO001), one of the largest reservoirs during the Joseon Dynasty period, and along the Nakdong River, the largest river in the Republic of Korea (strains NR5-2, NR12-1, and NR14-1) for the first time. Microscopic observations and 18S rDNA phylogenetic trees revealed the four isolated strains to be Acanthamoeba polyphaga (strains NR5-2 and NR12-1), Tetramitus waccamawensis (strain GO001), and Naegleria australiensis (strain NR14-1). Strains NR5-2 and NR12-1 might be the same species and belonged to the morphological Group 2 and the T4 genotype of Acanthamoeba. Strain GO001 formed a clade with T. waccamawensis in 18S rDNA phylogeny, and showed morphological characteristics similar to previously recorded strains, although the species' flagellate form was not observed. Strain NR14-1 had the typical morphology of Naegleria and formed a strongly supported clade with previously recorded strains of N. australiensis in phylogenetic analysis of 18S rDNA sequences. Conclusions: On the bases of morphological and molecular analyses, four strains of FLA were newly observed and classified in the Republic of Korea. Three strains belonging to the two species (A. polyphaga and N. australiensis) isolated from the Nakdong River have the potential to act as opportunistic pathogens that can cause fatal diseases (i.e. granulomatous amoebic encephalitis, Acanthamoeba Keratitis, and meningoencephalitis) in animals including humans. The Nakdong River in the Republic of Korea may provide a habitat for potentially pathogenic amoebae, but additional research is required to confirm the true pathogenicity of these FLA now known in the Republic of Korea.

Botrytis cinerea hypovirulent strain △BcSpd1 induced Panax ginseng defense

  • Shuhan Zhang;Junyou Han;Ning Liu;Jingyuan Sun;Huchen Chen;Jinglin Xia;Huiyan Ju;Shouan Liu
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.773-783
    • /
    • 2023
  • Background: Gray mold, caused by Botrytis cinerea, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to B. cinerea could be induced by fungal hypovirulent strain △BcSpd1. BcSpd1 encodes Zn(II)2Cys6 transcription factor which regulates fungal pathogenicity and we recently reported △BcSpd1 mutants reduced fungal virulence. Methods: We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by B. cinerea △BcSpd1. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed. Results: We found that △BcSpd1 enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △BcSpd1 on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth. Conclusion: B. cinerea △BcSpd1 could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.

First Report of Charcoal Rot Caused by Macrophomina phaseolina on Peanut Plants in Korea (땅콩에서 Macrophomina phaseolina에 의한 균핵마름병 발생 보고)

  • Soo Yeon Choi;You Kyoung Lee;Chang Ok Geum;Shinhwa Kim;Hyunjung Chung;Sang-Min Kim;Yong Hoon Lee
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.383-387
    • /
    • 2023
  • Peanut plants showing mild wilt were found in fields of Iksan, Korea, in August 2021. The diseased peanut plants were collected, and the causal pathogens were isolated using potato dextrose agar (PDA) medium. The isolated IS-1 strain formed white mycelia on PDA, which turned black with age. Sclerotia were produced on the PDA and barley leaves laid on water agar 7 d after incubation at 30℃. The sequences of both the internal transcribed spacer (ITS) region and calmodulin gene of IS-1 showed a 100% similarity with that of Macrophomina phaseolina. A phylogenetic tree constructed using the ITS regions of fungal pathogens causing disease in peanut plants indicated that the IS-1 stain belongs to M. phaseolina. The inoculation of IS-1 sclerotia into peanut seedlings resulted in yellowing and wilt symptoms in aboveground plants and brown to dark rots in roots 35-40 d after inoculation. Overall, the morphological characteristics, molecular identification, and pathogenicity of IS-1 indicate that the causal pathogen is M. phaseolina. This is the first report of charcoal rot caused by M. phaseolina on peanut plants in Korea. Further study is needed to develop the control measures for charcoal rot in peanut plants.

P-hydroxybenzoic acid positively affect the Fusarium oxysporum to stimulate root rot in Panax notoginseng

  • Jing Zhao;Zhandi Wang;Rong Jiao;Qionglian Wan;Lianchun Wang;Liangxing Li;Yali Yang;Shahzad Munir
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.229-235
    • /
    • 2024
  • Background: Plant health is directly related to the change in native microbial diversity and changes in soil health have been implicated as one of the main cause of root rot. However, scarce information is present regarding allelopathic relationship of Panax notoginseng root exudates and pathogenic fungi Fusarium oxysporum in a continuous cropping system. Methods: We analyzed P. notoginseng root exudate in the planting soil for three successive years to determine phenolic acid concentration using GC-MS and HPLC followed by effect on the microbial community assembly. Antioxidant enzymes were checked in the roots to confirm possible resistance in P. notoginseng. Results: Total 29 allelochemicals in the planting soil extract was found with highest concentration (10.54 %) of p-hydroxybenzoic acid. The HPLC showing a year-by-year decrease in p-hydroxybenzoic acid content in soil of different planting years, and an increase in population of F. oxysporum. Moreover, community analysis displayed negative correlation with 2.22 mmol. L-1 of p-hydroxybenzoic acid correspond to an 18.1 % population of F. oxysporum. Furthermore, in vitro plate assay indicates that medium dose of p-hydroxybenzoic acid (2.5-5 mmol. L-1) can stimulate the growth of F. oxysporum colonies and the production of macroconidia, as well as cell wall-degrading enzymes. We found that 2-3 mmol. L-1 of p-hydroxybenzoic acid significantly increased the population of F. oxysporum. Conclusion: In conclusion, our study suggested that p-hydroxybenzoic acid have negative effect on the root system and modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease.