DOI QR코드

DOI QR Code

Botrytis cinerea hypovirulent strain △BcSpd1 induced Panax ginseng defense

  • Shuhan Zhang (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • Junyou Han (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • Ning Liu (Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences) ;
  • Jingyuan Sun (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • Huchen Chen (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • Jinglin Xia (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • Huiyan Ju (Laboratory of Tea and Medicinal Plant Pathology, Jilin University) ;
  • Shouan Liu (Laboratory of Tea and Medicinal Plant Pathology, Jilin University)
  • 투고 : 2022.12.27
  • 심사 : 2023.08.30
  • 발행 : 2023.11.01

초록

Background: Gray mold, caused by Botrytis cinerea, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to B. cinerea could be induced by fungal hypovirulent strain △BcSpd1. BcSpd1 encodes Zn(II)2Cys6 transcription factor which regulates fungal pathogenicity and we recently reported △BcSpd1 mutants reduced fungal virulence. Methods: We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by B. cinerea △BcSpd1. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed. Results: We found that △BcSpd1 enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △BcSpd1 on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth. Conclusion: B. cinerea △BcSpd1 could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.

키워드

과제정보

This work was partly supported by the National Natural Science Foundation of China (No. 32171801 to S.L.), Jilin Province Science and Technology Development Project of China (No. 20210202095NC to N.L.), and the Cross-Disciplinary Innovation Founding of Jilin University (No. JLUXKJC2020313 to S.L.).

참고문헌

  1. Jones JD, Dangl JL. The plant immune system. Nature 2006;444(7117):323-9. https://doi.org/10.1038/nature05286
  2. Jones JD, Vance RE, Dangl JL. Intracellular innate immune surveillance devices in plants and animals. Science 2016;354(6316) (New York, NY).
  3. Ngou BPM, Ahn HK, Ding P, Jones JDG. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 2021;592(7852):110-5. https://doi.org/10.1038/s41586-021-03315-7
  4. Yuan M, Ngou BPM, Ding P, Xin XF. PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology 2021;62:102030.
  5. Poveda J, Abril-Urias P, Escobar C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, Mycorrhizal and Endophytic Fungi. Frontiers in Microbiology 2020;11:992.
  6. Stirling GR. Biological control of plant-parasitic nematodes. In: Diseases of nematodes. Boca Raton, FL: CRC Press: G. O. Poinar and H. -B. Jansson; 2018. p. 103-50.
  7. Contreras-Cornejo HA, Macias-Rodriguez L, Beltran-Pena E, Herrera-Estrella A, Lopez-Bucio J. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signaling & Behavior 2011;6(10):1554-63. https://doi.org/10.4161/psb.6.10.17443
  8. Zhang Xk W, Wu X, Ye J. Bacillus velezensis JK-XZ8 prevents and controls crown gall disease on Prunus subhirtella by colonizing and inducing resistance. Journal of Forestry Research 2022;33(3):1019-31. https://doi.org/10.1007/s11676-021-01393-x
  9. Naziya B, Murali M, Amruthesh KN. Plant Growth-Promoting Fungi (PGPF) instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici (Syd.). Butler & Bisby. Biomolecules. 2019;10(1).
  10. Wang H, Hao Z, Zhang X, Xie W, Chen B. Arbuscular mycorrhizal fungi induced plant resistance against Fusarium wilt in jasmonate biosynthesis defective mutant and wild type of tomato. Journal of Fungi (Basel, Switzerland) 2022;8(5).
  11. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD. Systemic acquired resistance. The Plant Cell 1996;8(10):1809-19. https://doi.org/10.2307/3870231
  12. van Loon LC, Bakker PA, Pieterse CM. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 1998;36:453-83. https://doi.org/10.1146/annurev.phyto.36.1.453
  13. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 2005;43:205-27. https://doi.org/10.1146/annurev.phyto.43.040204.135923
  14. Birkenbihl RP, Liu S, Somssich IE. Transcriptional events defining plant immune responses. Current Opinion in Plant Biology 2017;38:1-9. https://doi.org/10.1016/j.pbi.2017.04.004
  15. Chen H, Zhang S, He S, A R, Wang M, Liu S. The necrotroph Botrytis cinerea promotes disease development in Panax ginseng by manipulating plant defense signals and antifungal metabolites degradation. Journal of Ginseng Research 2022;46(6):790-800. https://doi.org/10.1016/j.jgr.2022.03.005
  16. Shoresh M, Harman GE, Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 2010;48:21-43. https://doi.org/10.1146/annurev-phyto-073009-114450
  17. Guerreiro A, Figueiredo J, Sousa Silva M, Figueiredo A. Linking jasmonic acid to grapevine resistance against the biotrophic oomycete Plasmopara viticola. Frontiers in Plant Science 2016;7:565.
  18. Liu L, Sonbol FM, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He SY, Dong X, et al. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nature Communications 2016;7:13099.
  19. Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens. Trends in Plant Science 2012;17(2):73-90. https://doi.org/10.1016/j.tplants.2011.11.002
  20. Darvill A. Phytoalexins and their elicitors-A defense against microbial infection in plants. Annual Review of Plant Physiology and Plant Molecular Biology 1984;35:243-75. https://doi.org/10.1146/annurev.pp.35.060184.001331
  21. Elad Y. Botrytis e the fungus, the pathogen and its management in agricultural systems. 2016.
  22. Singh S. Role of nonpathogenic fungi in inducing systemic resistance in crop plants against phytopathogens. 2016. p. 69-84.
  23. Pal KK, McSpadden Gardener B. Biological control of plant pathogens. The Plant Health Instructor 2006;2.
  24. Xiang N, Lawrence KS, Donald PA. Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: a review. Journal of Phytopathology 2018;166(7-8):449-58. https://doi.org/10.1111/jph.12712
  25. Martinez-Medina A, Fernandez I, Sanchez-Guzman MJ, Jung SC, Pascual JA, Pozo MJ. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science 2013;4:206.
  26. Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control 2018;117:147-57. https://doi.org/10.1016/j.biocontrol.2017.11.006
  27. Chen H, He S, Zhang S, A R, Li W, Liu S. The necrotroph Botrytis cinerea BcSpd1 plays a key role in modulating both fungal pathogenic factors and plant disease development. Frontiers in Plant Science 2022;13:820767.
  28. Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015;4:e07295.
  29. Liu S. Pathogen inoculation procedure. Bio-101 2020:580 (Preprint).
  30. Dangl JL, Horvath DM, Staskawicz BJ. Pivoting the plant immune system from dissection to deployment. Science (New York, NY) 2013;341(6147):746-51. https://doi.org/10.1126/science.1236011
  31. Jimtha Jck S, Ge M. Probiotic prospects of PGPR for green and sustainable agriculture. Archives of Phytopathology and Plant Protection 2020;(2):1-16.
  32. Jahagirdar S, Kambrekar D, Navi S, Kunta M. Plant growth-promoting fungi: diversity and classification. 2019. p. 25-34.
  33. Gandhi K, Rajendran L, Murugesan S, Thiruvengadam R. Microbial Rhizobacteria-mediated signalling and plant growth promotion. 2019. p. 35-58.
  34. Kremer R, Caesar AJ, Souissi T. Soilborne microorganisms of Euphorbia are potential biological control agents of the invasive weed leafy spurge. Applied Soil Ecology 2006;32:27-37. https://doi.org/10.1016/j.apsoil.2004.12.009
  35. Sayyed RZ, Chincholkar SB. Growth and siderophores production in Alcaligenes faecalis is regulated by metal ions. Indian Journal of Microbiology 2010;50(2):179-82. https://doi.org/10.1007/s12088-010-0021-1
  36. Jimtha C, Panichikkal J, Sreelekha S, Sivanandan C, Krishnankutty R. Antifungal properties of prodigiosin producing rhizospheric Serratia sp. Rhizosphere 2017;3.
  37. Jimtha C, Krishnankutty R. Multipotent plant probiotic Rhizobacteria from western ghats and its effect on quantitative enhancement of medicinal natural product biosynthesis. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 2016;88.
  38. Bloemberg GV, Lugtenberg BJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology 2001;4(4):343-50. https://doi.org/10.1016/S1369-5266(00)00183-7
  39. Nelson EB. Microbial dynamics and interactions in the spermosphere. Annual Review of Phytopathology 2004;42:271-309. https://doi.org/10.1146/annurev.phyto.42.121603.131041
  40. Elsharkawy M, Byrappa S, Manchanahally M, Hyakumachi M. Mechanism of induced systemic resistance against anthracnose disease in cucumber by plant growth-promoting fungi. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science 2015;65:1-13.
  41. Tian B, Xie J, Fu Y, Cheng J, Li B, Chen T, Zhao Y, Gao Z, Yang P, Barbetti MJ, et al. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. ISME J 2020;14(12):3120-35. https://doi.org/10.1038/s41396-020-00744-6
  42. Jalmi SK, Sinha AK. Ambiguities of PGPR-induced plant signaling and stress management. Frontiers in Microbiology 2022;13:899563.
  43. Tyskiewicz R, Nowak A, Ozimek E, Jaroszuk-Scisel J. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences 2022;23(4).
  44. Weindling R. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 1932;22:837-45.
  45. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA. Coordinate gene activity in response to agents that induce systemic acquired resistance. The Plant Cell 1991;3(10):1085e94.
  46. Hammerschmidt R. Rapid deposition of lignin in potato tissue as a response to fungi non-pathogenic on potato. Physiological Plant Pathology 1984;24:33-42. https://doi.org/10.1016/0048-4059(84)90071-7
  47. Srivastava S, Bist V, Srivastava S, Singh PC, Trivedi PK, Asif MH, et al. Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Frontiers in Plant Science 2016;7:587.
  48. Yan Z, Perez-de-Castro A, Diez MJ, Hutton SF, Visser RGF, Wolters AA, et al. Resistance to Tomato Yellow Leaf Curl Virus in tomato germplasm. Frontiers in Plant Science 2018;9:1198.
  49. Kumar S, Chauhan PS, Agrawal L, Raj R, Srivastava A, Gupta S, Mishra SK, Yadav S, Singh PC. Raj S.K.,et al. Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of Cucumber mosaic virus. PloS One 2016;11(3):e0149980.
  50. Dixit R, Agrawal L, Gupta S, Kumar M, Yadav S, Chauhan PS. Nautiyal C.S. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488. Plant Signaling & Behavior 2016;11(2):e1113363.
  51. Liu S, Ziegler J, Zeier J, Birkenbihl RP, Somssich IE. Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity. Plant, Cell & Environment 2017;40(10):2189-206. https://doi.org/10.1111/pce.13022
  52. Whitehead SR, Bowers MD. Evidence for the adaptive significance of secondary compounds in vertebrate-dispersed fruits. The American Naturalist 2013;182(5):563-77. https://doi.org/10.1086/673258
  53. Sudheeran PK, Ovadia R, Galsarker O, Maoz I, Sela N, Maurer D, Feygenberg O, Shamir MO, Alkan N. Glycosylated flavonoids: fruit's concealed antifungal arsenal. The New Phytologist 2020;225(4):1788-98. https://doi.org/10.1111/nph.16251
  54. Li Y, Fang J, Qi X, Lin M, Zhong Y, Sun L, et al. Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. International Journal of Molecular Sciences 2018;19(5).
  55. Yu C, Luo X, Zhan X, Hao J, Zhang L, Song Yb L, Shen C, Dong M. Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas. BMC Plant Biology 2018;18(1):197.
  56. Heale JB. Activation of host defence mechanisms in response to Botrytis cinerea. 1992.
  57. Jeandet P, Bessis R, Sbaghi M, Meunier P. Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. Journal of Phytopathology 1995;143(3):135-9. https://doi.org/10.1111/j.1439-0434.1995.tb00246.x
  58. Razavi SM, Zahri S, Zarrini G, Nazemiyeh H, Mohammadi S. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Bioorganicheskaia Khimiia 2009;35(3):414-6. https://doi.org/10.1134/S1068162009030133
  59. Zhang Y, Butelli E, De Stefano R, Schoonbeek HJ, Magusin A, Pagliarani C, Wellner N, Hill L, Orzaez D. Granell A.,et al. Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Current Biology : CB 2013;23(12):1094-100. https://doi.org/10.1016/j.cub.2013.04.072
  60. Ramos FA, Takaishi Y, Shirotori M, Kawaguchi Y, Tsuchiya K, Shibata H, Higuti T, Tadokoro T, Takeuchi M. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. Journal of Agricultural and Food Chemistry 2006;54(10):3551-7. https://doi.org/10.1021/jf060251c
  61. Mikulic-Petkovsek M, Slatnar A, Schmitzer V, Stampar F, Veberic R, Koron D. Chemical profile of black currant fruit modified by different degree of infection with black currant leaf spot. Scientia Horticulturae 2013;150:399-409.  https://doi.org/10.1016/j.scienta.2012.11.038