DOI QR코드

DOI QR Code

Detection and characterization of potential virulence determinants in Staphylococcus pseudintermedius and S. schleiferi strains isolated from canine otitis externa in Korea

  • Gi Yong Lee (Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Soo In Lee (School of Bioresources and Bioscience, Chung-Ang University) ;
  • Ji Heon Park (Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Sun Do Kim (School of Bioresources and Bioscience, Chung-Ang University) ;
  • Geun-Bae Kim (School of Bioresources and Bioscience, Chung-Ang University) ;
  • Soo-Jin Yang (Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University)
  • Received : 2023.03.26
  • Accepted : 2023.10.25
  • Published : 2023.11.30

Abstract

Background: A recent increase in the occurrence of canine skin and soft tissue infections, including otitis externa and pyoderma, caused by antimicrobial-resistant Staphylococcus pseudintermedius and S. schleiferi has become a significant public and veterinary health issues. Objective: We investigated the virulence potentials associated with the occurrence of canine otitis externa in S. pseudintermedius and S. schleiferi. Methods: In this study, the prevalence of genes encoding leukocidins, exfoliative toxins, and staphylococcal enterotoxins (SEs) was investigated using previously characterized S. pseudintermedius (n = 26) and S. schleiferi (n = 19) isolates derived from canine otitis externa. Susceptibility to cathelicidins (K9CATH and PMAP-36) and hydrogen peroxide (H2O2) was also examined in both staphylococcal species. Results: A high prevalence of genes encoding leukocidins (lukS/F-I, lukS1/F1-S, and lukS2/F2-S), exfoliative toxins (siet, expB, and sset), and SEs was identified in both S. pseudintermedius and S. schleiferi isolates. Notably, S. pseudintermedius isolates possessed higher number of SE genes, especially newer SE genes, than S. schleiferi isolates harboring egc clusters. Although no significant differences in susceptibility to K9CATH and H2O2 were observed between the two isolate groups, S. pseudintermedius isolates exhibited enhanced resistance to PMAP-36 compared to S. schleiferi isolates. Conclusions: These findings suggest that high a prevalence of various toxin genes together with enhanced resistance to cathelicidins may contribute to the pathogenicity of S. pseudintermedius and S. schleiferi in canine cutaneous infections.

Keywords

Acknowledgement

This work was supported by a Cooperative Research Program for Agriculture Science & Technology Development (Grant No. PJ012811 to S.J.Y) funded by Rural Development Administration, Republic of Korea.

References

  1. Parlet CP, Brown MM, Horswill AR. Commensal staphylococci influence Staphylococcus aureus skin colonization and disease. Trends Microbiol. 2019;27(6):497-507. https://doi.org/10.1016/j.tim.2019.01.008
  2. Lee GY, Yang SJ. Comparative assessment of genotypic and phenotypic correlates of Staphylococcus pseudintermedius strains isolated from dogs with otitis externa and healthy dogs. Comp Immunol Microbiol Infect Dis. 2020;70:101376.
  3. Lee GY, Lee HH, Hwang SY, Hong J, Lyoo KS, Yang SJ. Carriage of Staphylococcus schleiferi from canine otitis externa: antimicrobial resistance profiles and virulence factors associated with skin infection. J Vet Sci. 2019;20(2):e6.
  4. Penna B, Mendes W, Rabello R, Lilenbaum W. Carriage of methicillin susceptible and resistant Staphylococcus schleiferi among dog with or without topic infections. Vet Microbiol. 2013;162(1):298-299. https://doi.org/10.1016/j.vetmic.2012.08.022
  5. Wang Z, Guo L, Li J, Li J, Cui L, Dong J, et al. Antibiotic resistance, biofilm formation, and virulence factors of isolates of staphylococcus pseudintermedius from healthy dogs and dogs with keratitis. Front Vet Sci. 2022;9:903633.
  6. Iyori K, Hisatsune J, Kawakami T, Shibata S, Murayama N, Ide K, et al. Identification of a novel Staphylococcus pseudintermedius exfoliative toxin gene and its prevalence in isolates from canines with pyoderma and healthy dogs. FEMS Microbiol Lett. 2010;312(2):169-175. https://doi.org/10.1111/j.1574-6968.2010.02113.x
  7. Iyori K, Futagawa-Saito K, Hisatsune J, Yamamoto M, Sekiguchi M, Ide K, et al. Staphylococcus pseudintermedius exfoliative toxin EXI selectively digests canine desmoglein 1 and causes subcorneal clefts in canine epidermis. Vet Dermatol. 2011;22(4):319-326. https://doi.org/10.1111/j.1365-3164.2011.00952.x
  8. Futagawa-Saito K, Makino S, Sunaga F, Kato Y, Sakurai-Komada N, Ba-Thein W, et al. Identification of first exfoliative toxin in Staphylococcus pseudintermedius. FEMS Microbiol Lett. 2009;301(2):176-180. https://doi.org/10.1111/j.1574-6968.2009.01823.x
  9. Futagawa-Saito K, Sugiyama T, Karube S, Sakurai N, Ba-Thein W, Fukuyasu T. Prevalence and characterization of leukotoxin-producing Staphylococcus intermedius in Isolates from dogs and pigeons. J Clin Microbiol. 2004;42(11):5324-5326. https://doi.org/10.1128/JCM.42.11.5324-5326.2004
  10. Abouelkhair MA, Bemis DA, Giannone RJ, Frank LA, Kania SA. Characterization of a leukocidin identified in Staphylococcus pseudintermedius. PLoS One. 2018;13(9):e0204450.
  11. Tanabe T, Toyoguchi M, Hirano F, Chiba M, Onuma K, Sato H. Prevalence of staphylococcal enterotoxins in Staphylococcus pseudintermedius isolates from dogs with pyoderma and healthy dogs. Microbiol Immunol. 2013;57(9):651-654. https://doi.org/10.1111/1348-0421.12069
  12. Yoon JW, Lee GJ, Lee SY, Park C, Yoo JH, Park HM. Prevalence of genes for enterotoxins, toxic shock syndrome toxin 1 and exfoliative toxin among clinical isolates of Staphylococcus pseudintermedius from canine origin. Vet Dermatol. 2010;21(5):484-489. https://doi.org/10.1111/j.1365-3164.2009.00874.x
  13. Terauchi R, Sato H, Hasegawa T, Yamaguchi T, Aizawa C, Maehara N. Isolation of exfoliative toxin from Staphylococcus intermedius and its local toxicity in dogs. Vet Microbiol. 2003;94(1):19-29. https://doi.org/10.1016/S0378-1135(03)00048-8
  14. Edwards VM, Deringer JR, Callantine SD, Deobald CF, Berger PH, Kapur V, et al. Characterization of the canine type C enterotoxin produced by Staphylococcus intermedius pyoderma isolates. Infect Immun. 1997;65(6):2346-2352. https://doi.org/10.1128/iai.65.6.2346-2352.1997
  15. Han JI, Yang CH, Park HM. Prevalence and risk factors of Staphylococcus spp. carriage among dogs and their owners: a cross-sectional study. Vet J. 2016;212:15-21. https://doi.org/10.1016/j.tvjl.2015.10.059
  16. Santoro D, Maddox CW. Canine antimicrobial peptides are effective against resistant bacteria and yeasts. Vet Dermatol. 2014;25(1):35-e12.
  17. Kang KM, Park JH, Kim SH, Yang SJ. Potential role of host defense antimicrobial peptide resistance in increased virulence of health care-associated MRSA strains of sequence type (ST) 5 versus livestock-associated and community-associated MRSA strains of ST72. Comp Immunol Microbiol Infect Dis. 2019;62:13-18. https://doi.org/10.1016/j.cimid.2018.11.012
  18. Prevost G, Bouakham T, Piemont Y, Monteil H. Characterisation of a synergohymenotropic toxin produced by Staphylococcus intermedius. FEBS Lett. 1995;376(3):135-140. https://doi.org/10.1016/0014-5793(95)01260-9
  19. Park JY, Fox LK, Seo KS, McGuire MA, Park YH, Rurangirwa FR, et al. Detection of classical and newly described staphylococcal superantigen genes in coagulase-negative staphylococci isolated from bovine intramammary infections. Vet Microbiol. 2011;147(1-2):149-154. https://doi.org/10.1016/j.vetmic.2010.06.021
  20. Lee SI, Kim SD, Park JH, Yang SJ. Species distribution, antimicrobial resistance, and enterotoxigenicity of non-aureus staphylococci in retail chicken meat. Antibiotics (Basel). 2020;9(11):809.
  21. Otto M. Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol. 2010;5(2):183-195. https://doi.org/10.1586/edm.10.6
  22. Sang Y, Teresa Ortega M, Rune K, Xiau W, Zhang G, Soulages JL, et al. Canine cathelicidin (K9CATH): gene cloning, expression, and biochemical activity of a novel pro-myeloid antimicrobial peptide. Dev Comp Immunol. 2007;31(12):1278-1296. https://doi.org/10.1016/j.dci.2007.03.007
  23. Lv Y, Wang J, Gao H, Wang Z, Dong N, Ma Q, et al. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. PLoS One. 2014;9(1):e86364.
  24. Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, et al. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant Gram-negative bacterial pathogens. EBioMedicine. 2015;2(7):690-698. https://doi.org/10.1016/j.ebiom.2015.05.021
  25. Cole LK. Anatomy and physiology of the canine ear. Vet Dermatol. 2009;20(5-6):412-421. https://doi.org/10.1111/j.1365-3164.2009.00849.x
  26. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med. 2005;202(2):209-215. https://doi.org/10.1084/jem.20050846
  27. May ER, Kinyon JM, Noxon JO. Nasal carriage of Staphylococcus schleiferi from healthy dogs and dogs with otitis, pyoderma or both. Vet Microbiol. 2012;160(3-4):443-448. https://doi.org/10.1016/j.vetmic.2012.06.020
  28. Courjon J, Hubiche T, Phan A, Tristan A, Bes M, Vandenesch F, et al. Skin findings of Staphylococcus aureus toxin-mediated infection in relation to toxin encoding genes. Pediatr Infect Dis J. 2013;32(7):727-730. https://doi.org/10.1097/INF.0b013e31828e89f5
  29. Gomez-Sanz E, Torres C, Lozano C, Saenz Y, Zarazaga M. Detection and characterization of methicillin-resistant Staphylococcus pseudintermedius in healthy dogs in La Rioja, Spain. Comp Immunol Microbiol Infect Dis. 2011;34(5):447-453. https://doi.org/10.1016/j.cimid.2011.08.002
  30. Gharsa H, Ben Slama K, Gomez-Sanz E, Lozano C, Klibi N, Jouini A, et al. Antimicrobial resistance, virulence genes, and genetic lineages of Staphylococcus pseudintermedius in healthy dogs in tunisia. Microb Ecol. 2013;66(2):363-368. https://doi.org/10.1007/s00248-013-0243-y
  31. Melter O, Svec P, Tkadlec J, Doskar J, Kinska H, Pantucek R. Characterisation of methicillin-susceptible Staphylococcus pseudintermedius isolates from canine infections and determination of virulence factors using multiplex PCR. Vet Med (Praha). 2017;62(2):81-89. https://doi.org/10.17221/105/2016-VETMED
  32. Gomez-Sanz E, Torres C, Lozano C, Zarazaga M. High diversity of Staphylococcus aureus and Staphylococcus pseudintermedius lineages and toxigenic traits in healthy pet-owning household members. Underestimating normal household contact? Comp Immunol Microbiol Infect Dis. 2013;36(1):83-94. https://doi.org/10.1016/j.cimid.2012.10.001
  33. Phumthanakorn N, Fungwithaya P, Chanchaithong P, Prapasarakul N. Enterotoxin gene profile of methicillin-resistant Staphylococcus pseudintermedius isolates from dogs, humans and the environment. J Med Microbiol. 2018;67(6):866-873. https://doi.org/10.1099/jmm.0.000748
  34. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, et al. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol. 2001;166(1):669-677. https://doi.org/10.4049/jimmunol.166.1.669
  35. Naorem RS, Goswami G, Gyorgy S, Fekete C. Comparative analysis of prophages carried by human and animal-associated Staphylococcus aureus strains spreading across the European regions. Sci Rep. 2021;11(1):18994.
  36. Blaiotta G, Ercolini D, Pennacchia C, Fusco V, Casaburi A, Pepe O, et al. PCR detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB-8802. J Appl Microbiol. 2004;97(4):719-730. https://doi.org/10.1111/j.1365-2672.2004.02349.x
  37. Dicks J, Turnbull JD, Russell J, Parkhill J, Alexander S. Genome sequencing of a historic Staphylococcus aureus collection reveals new enterotoxin genes and sheds light on the evolution and genomic organization of this key virulence gene family. J Bacteriol. 2021;203(10):e00587-20.
  38. Santoro D, Bunick D, Graves TK, Segre M. Evaluation of canine antimicrobial peptides in infected and noninfected chronic atopic skin. Vet Dermatol. 2013;24(1):39-47.e10. https://doi.org/10.1111/j.1365-3164.2012.01091.x
  39. Breathnach RM, Quinn PJ, Baker KP, McGeady T, Strobl E, Abbott Y, et al. Association between skin surface pH, temperature and Staphylococcus pseudintermedius in dogs with immunomodulatory-responsive lymphocytic-plasmacytic pododermatitis. Vet Dermatol. 2011;22(4):312-318. https://doi.org/10.1111/j.1365-3164.2010.00946.x
  40. Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol. 2012;34(2):261-280. https://doi.org/10.1007/s00281-011-0292-6
  41. Lautz S, Kanbar T, Alber J, Lammler C, Weiss R, Prenger-Berninghoff E, et al. Dissemination of the gene encoding exfoliative toxin of Staphylococcus intermedius among strains isolated from dogs during routine microbiological diagnostics. J Vet Med B Infect Dis Vet Public Health. 2006;53(9):434-438. https://doi.org/10.1111/j.1439-0450.2006.00999.x
  42. Becker K, Roth R, Peters G. Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J Clin Microbiol. 1998;36(9):2548-2553. https://doi.org/10.1128/JCM.36.9.2548-2553.1998