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Nosocomial infections, commonly referred to as healthcare-associated infections, are ill-
nesses that patients get while hospitalized and are typically either not yet manifest or may 
develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneu-
monia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal 
pathogens cause pneumonia. More severe introductions commonly included Staphylococ-
cus aureus, which is at the top of bacterial infections, per World Health Organization re-
ports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and 
non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. 
Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with 
complete genome sequence and annotation. Our findings indicate that the genome is a 
single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 
62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing anal-
ysis, researchers will fully understand the genetic and molecular basis of the virulence of 
the S. aureus bacteria, which could help prevent the spread of nosocomial infections like 
pneumonia. Genome analysis of this strain was necessary to identify the specific genes and 
molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and ge-
netic diversity, allowing for a more in-depth investigation of its pathogenesis to develop 
new treatments and preventive measures against infections caused by this bacterium. 
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Introduction 

Pneumonia is an inflammatory lung illness mainly affecting the alveoli [1,2]. It is one of 
the leading causes of death and morbidity worldwide. Every year, roughly 450 million 
people are impacted, with 4 million (7% of total mortality) projected fatalities worldwide 
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[3,4]. According to one study, pneumonia is the eighth leading 
cause of death in the United States and the fourth leading cause of 
death worldwide [5]. According to the World Health Organiza-
tion, with 16% of all fatalities in children under five occurring from 
pneumonia, it is the leading cause of mortality in this age group 
globally [3]. Every year, around 200 million cases of both adults 
and children occur. The illness is five times more prevalent in de-
veloping nations than in wealthy countries [4]. 

Viruses, bacteria, and fungi are just a few microorganisms that 
can cause pneumonia, an acute inflammatory disease of the lung 
parenchyma [6]. Staphylococcus aureus is the cause of severe pneu-
monia [7]. Staphylococcal pneumonia induces alveolar and capil-
lary inflammation, resulting in blood stasis. The capillary mem-
brane of the alveoli degrades, resulting in exudative pleural effu-
sion and atelectasis [8]. 

Many clinical signs are brought on by S. aureus, a frequent noso-
comial and community-acquired infection. The skin and mucous 
membranes of various hosts, such as people, poultry, cattle, birds, 
and sheep, are where the pathogen lives or momentarily colonize 
[9]. An opportunistic bacteria called S. aureus infects 20%–40% of 
people and lives asymptomatically in the skin flora, nasopharynx, 
throat, digestive system, lower female reproductive tract, and ante-
rior nares [10]. It's the leading cause of skin and soft tissue infec-
tions. It enters the circulation through subcutaneous tissues and 
affects heart valves and tissues [11]. 

In chronic wounds such as (surgical site and traumatic wounds), 
ulcers like foot ulcers(diabetic and venous), and pressure ulcers, S. 
aureus is usually found as a commensal [12]. The most severe dis-
ease that S. aureus may cause is pneumonia, the leading cause of 
death worldwide. Because of the illness's rising prevalence and 
quick transmission within the afflicted animal population, inter-
ventions must be implemented to prevent disease spread and safe-
guard nearby species. 

Classification and features 
S. aureus is a gram-positive, non-sporulating, non-motile, spherical 
member of the Staphylococcaceae family of bacteria [13]. The 
bacterium was first discovered in 1881 by Sir Alexander Ogston 
from pus in a surgical abscess and named Staphylococcus after its 
clustered appearance with a diameter of 0.5–1.5 µm [14]. These 
organisms can grow aerobically or anaerobically (facultative) by 
aerobic respiration or by fermentation [15] and at a temperature 
between 18°C and 40°C [16]. The optimum pH for metabolism 
ranges from 7.0 to 7.5 [17]. After initially growing sporadically, 
strain RMI-014804 forms round, raised, opaque, yellow to golden 
colonies on an agar surface [18]. S. aureus is classified into different 

biotypes according to color and growth [19]. The thick protective 
layer of the S. aureus cell wall has an amorphous appearance. The 
core of the cell wall, which makes up around 50% of its bulk, is 
peptidoglycan [20]. Teichoic acid, which makes up approximately 
40% of the mass of the cell wall and is a group of phosphate-con-
taining polymers, is another component of the cell wall. Teichoic 
acids are classified into two types: wall teichoic acids and lipote-
ichoic acids. Wall teichoic acids are layers of lengthy anionic pepti-
doglycan polymers comprised mostly of glycerol phosphate, glu-
cosyl phosphate, or ribitol phosphate repetitions. The teichoic ac-
ids in the wall are covalently linked to lipoteichoic acids, which are 
bonded to the head groups of membrane lipids [21]. 

To cling to plasma and extracellular matrix, S. aureus has many 
unique adhesions on its surface that bind with a range of host pro-
teins, including fibronectin, fibrinogen, collagen, vitronectin, and 
laminin [22]. These adhesions are MSCRAMMs (microbial sur-
face components recognizing adhesive matrix molecules) [23]. All 
S. aureus isolates produce coagulase, catalase, and an extracellular 
cell clumping factor; some bacteria create capsules [24]. 

Methods 

Selection of genomes 
The bacterial strains were chosen due to their rapidly developing 
resistance to antibiotics for widespread clinical usage, the discov-
ery of therapeutic targets, and the development of novel medi-
cines.  

Sample collection  
A bacterial sample was collected from the sputum of a pulmonary 
patient at Rehman Medical Institute (RMI) in Peshawar, Pakistan. 
The isolate was identified using standard procedures and tests 
such as gram staining, catalase, coagulase, and DNase [25]. The 
Centre of Genomic Sciences in RMI Peshawar, KPK, Pakistan, un-
dertook further analysis, sequencing, and annotation. 

Growth condition and DNA isolation 
With NaCl concentrations of up to 15%, S. aureus may thrive at 
temperatures ranging from 15°C to 45°C. Mannitol salt agar with 
7.5% NaCl was used as a selective medium. S. aureus was grown for 
24 h in a 37°C incubator with a 200-rpm shaker on rich media 
such as tryptic soy agar, brain heart infusion, and Luria Bertani. To 
suspend pure colonies in 300 µL, tent buffer (10 mM Tris-HCl, 0.1 
M NaCl, 1 mM EDTA, 5% [v/v] Triton X100, pH 8.0) was em-
ployed. After boiling at 100°C, the cell suspension was centrifuged. 
The supernatant fluid was transferred to a new sterile tube. The 
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supernatant was treated for 20 min at –20°C with cold 95% etha-
nol. The solution was then centrifuged. The DNA templates were 
maintained at –20°C after being dissolved in 50 µL of sterile dis-
tilled water. A NanoDrop ND-1000 spectrophotometer assessed 
the solution's concentration and purity. 

DNA extraction and library preparation 
For sequencing genomic DNA was extracted using the Qiagen Kit 
(Qiagen, Valencia, CA, USA) according to the manufacturer's in-
structions, quantified by a nano-drop (Thermo Fisher Scientific, 
Waltham, MA, USA) and then submitted to library preparation 
utilizing the Nextera XT kit (Illumina, San Diego, CA, USA). 

Setting genome sequencing assembly 
The whole genome sequences of S. aureus RMI-014804 used the 
MiSeq sequencing technology from Illumina with 2 × 150 bp to 
obtain its results. Poor and low-quality reads ends are filtered and 
trimmed using Trimmomatic and then assembled using SPAdes 
v3.5.0 [26]. To predict tRNA, rRNA, and protein-coding genes 
(CDS), ARAGORN v1.2.34 [27], RNAmmer v1.2 [28], and 
Prodigal v2.60 [29] were utilized, respectively. BLAST is then 
used for database searches and sequence comparisons [30]. 

Genome annotation 
The final draft genome sequence of S. aureus RMI-014804 was 
utilized for annotation using RAST (Rapid Annotation using Sub-
system Technology) [31]. For the identification of genes involved 
in adhesion and biofilm formation, RAST platform and the VFDB 
(Virulence Factors of Pathogenic Bacteria) reference database 
were used [32]. For the annotation of antimicrobial resistance 
genes and toxin genes, ResFinder v4.1 and VirulenceFinder v2.0 
tools from the Centre of Genomic Epidemiology, were used, re-
spectively [33]. To standardize the analyses, all genomes were an-
notated with Prokka v1.14.6 [34]. Then these annotated genes 
were manually compared for genomic characteristics after being 
exported from the RAST server via an Excel table. The CGView 
server generated a graphical representation of the genomes' circu-
lar map [35]. 

Phylogenetic analysis 
The phylogenetic analysis of the mecA gene from different species 
of S. aureus that cause hospital infections was retrieved from the 
National Center for Biotechnology Information (NCBI) database. 
The phylogenetic tree was built using the neighbor-joining meth-
od as performed in MEGA X [36].  

Sequence data availability  
The genome project has been filed publically with the NCBI un-
der accession: SAMN19915631, BioProject: PRJNA741883, and 
BioSample: SAMN19915631 [37]. 

Results 

Genome project history 
The whole genome sequence of S. aureus RMI-014804 was depos-
ited in the NCBI (http://www.ncbi.nlm.nih.gov) database. The re-
sult is given in Table 1. 

Specifications of the genome 
The RMI-014804 strain's genome is 2,821,361 bp long, with an 
average G + C content of 28.76% and only has one main circular 
chromosome. The genome is expected to include 2,022 genes, in-
cluding 1,962 protein-coding genes, 60 RNA genes, 1 CRISPR re-
peat, 15 rRNAs, 44 tRNAs, one tmRNA, and 0 pseudogenes. Ta-
ble 2 [38-52] shows the classifications and general characteristics 
of S. aureus RMI-014804. The genome of the S. aureus strain RMI-
014804 is described in Table 3. 

Genome annotation 
The annotation of the whole genome of S. aureus strain RMI-
014804 on the RAST server (Fig. 1) showed a total of 2,022 genes 
belonging to 254 subsystems including cofactors, vitamins, pros-
thetic groups, pigments, cell wall and capsule and virulence, dis-
ease and defense, and only one main circular chromosome. The 
graphical circular maps of the RMI-014804 genome are shown in 
Fig. 2. 

Table 1. Genome project information

Property RMI-014804
Isolation Sputum
Geographic location Peshawar, KPK, Pakistan
Sample collection time 2,020
Sequence platform Illumina MiSeq
Libraries used 2 ×  150 bp
Assembly method SPAdes v. 3.9.0
Date of release 2021-06-28
BioProject PRJNA741883
BioSample SAMN19915631
Locus tag KUE46
Relevance Medical
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Table 2. Staphylococcus aureus strain RMI-014804 classification and general characteristics according to MIGS guidelines [38]

MIGS ID Property Term Evidence code
Classification Domain Bacteria TAS [39]

Phylum Firmicutes TAS [40]
Class Bacilli TAS [41]
Order Bacillales TAS [41]
Family Staphylococcaceae TAS [41]
Genus Staphylococcus TAS [41,42]
Species Staphylococcus aureus TAS [41]
Strain RMI-014804

Gram strain Positive TAS [16,43,44]
Cell shape Rounded TAS [44]
Mortality Non-motile TAS [43,44]
Sporulation Non-sporulating TAS [43]
Temperature range Mesophile TAS [45]
Optimum temperature 37°C TAS [45]
Salinity Not reported NAS

MIGS-22 Oxygen requirement Aerobic and facultatively anaerobic TAS [16,44]
Carbon source Glucose TAS [46,47]

MIGS-6 Habitat Host TAS [42,48]
MIGS-15 Biotic relationship Intracellular facultative pathogen TAS [49,50]
MIGS-14 Pathogenicity Human, poultry, cattle, birds, and 

goat/sheep
TAS [51,52]

Isolation Sputum IDA
MIGS-4 Geographic location Peshawar, KPK, Pakistan IDA
MIGS-5 Sample collection time 2020 IDA
MIGS-4.1 Latitude 34.008
MIGS-4.2 Longitude 71.57849
MIGS-4.3 Depth Not reported
MIGS-4.4 Altitude Not reported

Evidence codes: IDA, Inferred from Direct Assay (first time in publication); TAS, Traceable Author Statement (i.e., a direct report exists in the literature); NAS, 
non-traceable author statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or 
anecdotal evidence). These evidence codes are from the Gene Ontology project [52]. If the evidence code is IDA, then the property was directly observed for 
a living isolate by one of the authors or an expert mentioned in the acknowledgments.

Table 3. Genome statistics of the newly identified strain

Attribute Value % of Total
Genome size 2,821,361 100
DNA coding region (bp) 1,521,337 53.29
DNA G+C content 406,116 + 405,281 28.76
Total genes 2,022 100
RNA genes 60 2.97
rRNA operons 15 0.74
Protein-coding genes 1,962 97.03
Pseudogenes 0
CRISPR repeats 1

Genes involved in virulence, disease, and defense 
The results showed that 51 genes were responsible for virulence, 
disease, and defense, 21 genes for adhesion, four genes for bacte-
riocins, ribosomally synthesized antibacterial peptides, 17 genes 
for antibiotic resistances and toxic compounds, and nine genes for 
invasion and intracellular resistance. Some of the functional pro-
teins encoded by these genes are clumping factors A and B, chap-
erone, fibronectin binding protein, collagen binding protein, 
two-component response regulator BceR and YvcP, acetyl-coen-
zyme A carboxyl transferase alpha and beta chain, mercuric reduc-
tase, thioredoxin reductase, fosfomycin and fluoroquinolones re-
sistance, MerR family and multidrug resistance protein. 
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Fig. 1. Summary of annotation of RMI-014804 strain using RAST substystem.

Fig. 2. The genome is represented graphically as a circular map. From the outer to the inside. Forward strand genes (cyan), reverse strand 
genes (purple), RNA genes (tRNAs, blue; rRNA, red), GC concentration, GC skew.

Subsystem Information
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Phages, prophages, transposable elements, and plasmids 
The results showed that six genes encode for phages, prophages, 
transposable elements, and plasmids, with five of them responsible 
for phages, prophages, and pathogenicity islands and one for plas-
mid-related functions. 

Phylogenetic analysis of strain RMI-014804 using mecA gene 
We chose to use the mecA gene for sequence similarity analysis in-
stead of the 16s rRNA gene because the mecA gene is specific to 
staphylococci and is known to be a useful marker for detecting 
methicillin-resistant strains [53]. We wanted to focus on the ge-
netic relatedness of methicillin-resistant staphylococci rather than 
the overall relatedness of bacterial species. The phylogenetic anal-
ysis of the mecA gene revealed that the RMI-014804 strain shares 
the most similarities with other S. aureus strains (Fig. 3).  

Analysis of the metabolic pathway  
Based on annotated EC numbers and a custom enzyme name 
mapping file, Pathway Tools software version 26.0 was used com-
putationally to generate the metabolic pathway/Genome Database 
(PGDB) as shown in Fig. 4 [54]. As with a Tier 3 BioCyc PGDB, 
the database has not been manually edited and may include mis-
takes (Table 4) [55]. 

Discussion 

The present research showed the genome sequence of S. aureus 
isolated from Peshawar, Pakistan to have phylogenetic allocation 
utilizing the mecA gene to indicate the bacteria's evolutionary rela-
tionships. The phylogenetic analysis of the entire mecA gene se-
quence of strain RMI-014804 revealed that the strain belongs to 
the genus Staphylococcus. The annotated complete genome se-
quence of the strain RMI-014804 was 2,821,361 bp long and con-
tained 1,962 coding regions (CDS). 

Whole genome sequencing data was also used to examine anti-
biotic resistance and pathogenicity mechanisms. The isolate's drug 
resistance could be caused by the bacteria's ability to accumulate 
multiple genes on resistance (R) plasmids coding for a single drug 
resistance within a single cell, or by increased expression of genes 
coding for multidrug efflux pumps, which extrude a wide range of 
drugs [56]. 

The present research showed that the strain was found to have a 
variety of resistance mechanism including the use of resistant 
genes TcaR, TcaA, TcaB, TetR, PBP2a, or secretion of enzymes 
(DNA gyrase subunit A, DNA gyrase subunit B, topoisomerase 
IV subunit A, topoisomerase IV subunit B, and beta-lactamase re-
pressor) allowing it to use the efflux pump mechanism. The ge-
nome of RMI-014804 contains virulence genes (scn, hlgA, hlgB, 
hlgC, splA, and splB), enterotoxin genes (sed, sei, sej, tst, and lukE), 
and antibiotic resistance genes (mecA, NorA, NorB, NorC, MgrA, 

Fig. 3. A phylogenetic study of the mecA gene from several organisms that cause hospital infections is shown in the figure. The neighbor-
joining method was used to build the phylogenetic tree. The computations to calculate phylogenetic distances were performed using MEGA 
v9.
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Fig. 4. A diagram showing each metabolic pathway used by Staphylococcus aureus. Metabolites are represented by nodes, with forms 
reflecting the class of metabolites. Lines show reactions.

Table 4. Metabolic network analysis

Attribute Value
Total genes 2,022
Enzymes 687
Enzymatic reactions 1,265
Metabolic pathways 186
Transport reactions 76
Protein complex 66
Transporters 200
Compounds 944

MepR tet(K), dfrG, and blaZ). We also revealed Fosfomycin resis-
tance gene and chromosomal mutations in the ciprofloxacin resis-
tance genes gyrA and grlA [57]. 

Six potential MarR family transcriptional regulators were also 
found in the RMI-014804 genome. These were identified as a 
highly conserved group of multiple antibiotic resistance regulators 
that respond to a broad range of drugs [58]. The presence of mecA 

gene, which is located in the staphylococcal cassette chromosome 
mec (SCCmec) element, encodes a penicillin-binding protein 
(PBP2a) with a lower affinity for b-lactams, is responsible for the 
methicillin-resistant S. aureus phenotype. Methicillin resistance-re-
lated proteins (FemC, FemD, FmtA, and FmtB) are also found in 
the isolated strain. Such a result should be taken into account while 
developing an effective therapy platform. The antibiotic-resistant 
genes of RMI-014804 showed that this strain is complicated and 
has a broad spectrum of cross-antibiotic resistance. 

Whole genome sequencing may eventually displace a wide 
range of diagnostic and reference testing. Whole genome sequenc-
ing enables us to explore the epidemiology and genomic repertoire 
of S. aureus in clinical settings, which also gave proof of the organ-
ism's frequently underrated complexity. The current study pro-
vides information about an important antibiotic-resistant bacteria 
strain. The S. aureus RMI-014804 is resistant to tetracycline, fluo-
roquinolones, quinolones, acriflavin, penicillin, piperacillin, amox-
icillin, ampicillin, and trimethoprim/sulfamethoxazole. This result 
clearly suggests that other undiscovered determinants are directly 
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or indirectly involved in the transcriptional regulation of S. aureus. 
The whole genome of the RMI-014804 strain can give insight into 
the genetic basis of virulence, antibiotic resistance, and phages of S. 
aureus and could lead to a better understanding of its pathogenesis 
and the development of new strategies to prevent the spread of 
staphylococcal infections. 
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