DOI QR코드

DOI QR Code

P-hydroxybenzoic acid positively affect the Fusarium oxysporum to stimulate root rot in Panax notoginseng

  • Jing Zhao (College of Chemistry Biology and the Environment, Yuxi Normal University) ;
  • Zhandi Wang (College of Chemistry Biology and the Environment, Yuxi Normal University) ;
  • Rong Jiao (College of Chemistry Biology and the Environment, Yuxi Normal University) ;
  • Qionglian Wan (College of Chemistry Biology and the Environment, Yuxi Normal University) ;
  • Lianchun Wang (College of Chemistry Biology and the Environment, Yuxi Normal University) ;
  • Liangxing Li (College of Chemistry Biology and the Environment, Yuxi Normal University) ;
  • Yali Yang (College of Chemistry Biology and the Environment, Yuxi Normal University) ;
  • Shahzad Munir (State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University)
  • Received : 2023.04.01
  • Accepted : 2023.11.26
  • Published : 2024.03.01

Abstract

Background: Plant health is directly related to the change in native microbial diversity and changes in soil health have been implicated as one of the main cause of root rot. However, scarce information is present regarding allelopathic relationship of Panax notoginseng root exudates and pathogenic fungi Fusarium oxysporum in a continuous cropping system. Methods: We analyzed P. notoginseng root exudate in the planting soil for three successive years to determine phenolic acid concentration using GC-MS and HPLC followed by effect on the microbial community assembly. Antioxidant enzymes were checked in the roots to confirm possible resistance in P. notoginseng. Results: Total 29 allelochemicals in the planting soil extract was found with highest concentration (10.54 %) of p-hydroxybenzoic acid. The HPLC showing a year-by-year decrease in p-hydroxybenzoic acid content in soil of different planting years, and an increase in population of F. oxysporum. Moreover, community analysis displayed negative correlation with 2.22 mmol. L-1 of p-hydroxybenzoic acid correspond to an 18.1 % population of F. oxysporum. Furthermore, in vitro plate assay indicates that medium dose of p-hydroxybenzoic acid (2.5-5 mmol. L-1) can stimulate the growth of F. oxysporum colonies and the production of macroconidia, as well as cell wall-degrading enzymes. We found that 2-3 mmol. L-1 of p-hydroxybenzoic acid significantly increased the population of F. oxysporum. Conclusion: In conclusion, our study suggested that p-hydroxybenzoic acid have negative effect on the root system and modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease.

Keywords

Acknowledgement

We would like to thank Sangon Biotech in construction of the experimental platform is gratefully acknowledged.

References

  1. Tian GL, Bi YM, Cheng JD, Zhang FF, Zhou TH, Sun JZ, Zhang LS. High concentration of ferulic acid in rhizosphere soil accounts for the occurrence of fusarium wilt during the seedling stages of strawberry plants. Physiol Mol Plant Pathol 2019;108:101435-55. https://doi.org/10.1016/j.pmpp.2019.101435.
  2. Ma K, Kou J, Rahman M, Du W, Pan K. Palmitic acid mediated change of rhizosphere and alleviation of fusarium wilt disease in watermelon. Saudi J Biol Sci 2021;(2):512-26. https://doi.org/10.1016/j.sjbs.2021.03.040.
  3. Gao H, Shi YJ, Jin X, Wang J, Wu FZ, Zhou XG. Effects of p-hydroxybenzoic acid on cucumber rhizosphere Trichoderma spp. community structure and abundance. Allelopathy J 2019;47(1):93-102. https://doi.org/10.26651/allelo.j/2019-47-1-1222.
  4. Mao ZS, Long YJ, Zhu YY, Zhu SS, He XH, Chen ZJ. First report of Cylindrocarpon destructans var. destructans causing black root rot of sanqi (Panax notoginseng) in China. Plant Dis 2014;98:162. https://doi.org/10.1094/PDIS-11-12-1104-PDN.
  5. Zhang DQ, Yan DD, Cheng HY, Fang WS, Huang B, Wang XL, Wang XN, Yang y, Ouyang CB, Wang QX, Cao oc. Effects of multi-year biofumigation on soil bacterial and fungal communities and strawberry yield. Environ. Pollut. 2020;256. 10.10.1016/j.envpol.2019.113415.
  6. Zhou X, Zhang J, Pan D, Ge X, Jin X, Chen S, Wu F. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biol Fertil Soils 2018;54:363-72. https://doi.org/10.1007/s00374-018-1286-5.
  7. Huang LF, Song LX, Xia J, Mao WH, Shi K, Zhou YH. Plant-soil feedbacks and soil sickness: from mechanism to application in agriculture. J Chem Ecol 2013;39(2):232-42. https://doi.org/10.1007/s10886-013-0244-9.
  8. Inderjit Wardle DA, Karban R, Callaway RM. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 2011;26(12):655-62. https://doi.org/10.1016/j.tree.2011.08.003.
  9. Wu HS, Luo J, Liu YX, Chen AQ, Tang Z, Chao Y, Chen G, Mao ZS, Huang W, Shen QR. In vitro physiological responses of Fusarium oxysporum f. sp. niveum to exogenously applied syringic acid. J Eukaryot Microbiol 2009;56(4):386-7. https://doi.org/10.1111/j.1550-7408.2009.00417.x.
  10. Wu HS, Yin XM, Liu DY, Ling N, Bao W, Ying RR, Zhu YY, Guo SW, Shen QR. Effect of fungal fusaric acid on the root and leaf physiology of watermelon (Citrullus lanatus) seedlings. Plant Soil 2008;308:255-66. https://doi.org/10.1007/s11104-008-9627-z.
  11. Wu HS, Waseem R, Fan JQ, Sun YG, Bao W, Liu DY, Ling N, Mao ZS, Shen QR, Miao WG. Antibiotic effect of exogenously applied sal icylic acid on in vitro soilborne pathogen. Fusarium oxysporum f. sp. niveum. Chemosphere 2008;74(1):45-50. https://doi.org/10.1016/j.chemosphere.2008.09.027.
  12. Jin X, Wu F, Zhou X. Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition. Biol Fertil Soils 2020;56:642-50. https://doi.org/10.1007/s00374-019-01408-0.
  13. Wang GC, Chen HK, Luo PX. Isolation, inoculation and fungicidal tests on the pathogens causing root rot of Panax Panax notoginseng Wall. var. Notoginseng (Burkill) Hoo & Tseng. Acta Phytopathol Sin 1991;21(2):66.
  14. Miao CP, Mi QL, Qiao XG, Zheng YK, Zhao LX. Rhizospheric fungi of panax notoginseng: diversity and antagonism to host phytopathogens. Journal of Ginseng Research 2016;40(2):127-34. https://doi.org/10.1016/j.jgr.2015.06.004.
  15. Porter PM, Banwart WL, Hassett JJ. HPLC and GC-MS identificaton of genistein, daidzein and coumestrol from unhydrolyzed sobean root extracts. Environ Exp Bot 1985;25:29-232. https://doi.org/10.1016/0098-8472(85)90006-1.
  16. Pagnussatt FA, Delponte EM, Garda-Buffon J, Badiale-Furlong E. Inhibition of fusarium graminearum growth and mycotoxin production by phenolic extract from spirulina sp. Pestic Biochem Physiol 2014;108:21-6. https://doi.org/10.1016/j.pestbp.2013.11.002
  17. Scaglioni PT, Blandino M, Scarpino V, Giordano D, Testa G, Badiale-Furlong E. Application of fungicides and microalgal phenolic extracts for the direct control of fumonisin contamination in maize. J Agric Food Chem 2018;66(19):4835-41. https://doi.org/10.1021/acs.jafc.8b00540.
  18. Zhao J, Li M, Liu Q, Zhou ZM, Ye CB. Addition of chitosan improves the effificiency of total phosphorus removal from wastewater using the D-A2O reactor and metagenomic analysis. Water Pol 2021;23(6):1530-41. https://doi.org/10.2166/wp.2021.065. 2021.
  19. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Baelum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert GA, Jansson JK. Metagenomics reveals sediment microbial community response to deepwater horizon oil spill. ISME J 2014;8(7):1464-75. https://doi.org/10.1038/ismej.2013.254.
  20. Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Puhler A, Schluter A. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 2015;8(1):14. https://doi.org/10.1186/s13068-014-0193-8.
  21. Wu HS, Waseem R, Liu DY, Wu CL, Mao ZS, Shen QR. Allelopathic impact of artifificially applied coumarin on Fusarium oxysporum f. sp. niveum. World Journal of Microbiology and Biochemistry 2008;24:1297-304. https://doi.org/10.1007/s11274-007-9602-5.
  22. Wu HS, Waseem R, Fan JQ, Sun YG, Bao W, Shen QR. Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f. sp. niveum. J Agric Food Chem 2008;56:1316-21. https://doi.org/10.1021/jf0726482.
  23. Shafer SR, Blum U. Influence of phenolic acids on microbial populations in the rhizosphere of cucumber. J Chem Ecol 1991;17:369-89. https://doi.org/10.1007/BF00994339.
  24. Lv JX, Li L, Chen L, Guo YT, Dong K, Dong Y. Salicylic acid has allelopathy, but wheat and faba bean intercropping can alleviate faba bean fusarium wilt under salicylic acid stress. Research Square 2021;22(5):132-54. https://doi.org/10.21203/rs.3.rs-228506/v1.
  25. Emad K, Sujitraj S, Wei W, Wang XG. Determination of phenolic compounds in gurum(Citrulluslanatus var. Colocynthoide) seed oil obtained by different methods using HPLC. Food analitical methods 2020;13(5):264-78. https://doi.org/10.1007/s12161-020-01757-9.
  26. Kong J, Xie YF, Yu H, Guo YH, Cheng YL, Qian H, Yao WR. Synergistic antifungal mechanism of thymol and salicylic acid on. Fusarium solani 2021;140(1):81-9.
  27. Wu HS, Raza W, Fan JQ, Sun YG, Bao W, Liu DY, Huang QW, Mao ZS, Shen QR, Miao WG. Antibiotic effect of exogenously applied salicylic acid on in vitro soilbotne pathogen. Fusarium oxysporum f.sp.niveum. 2008;74:45-50.
  28. Przybylska-Balcerek A, Szablewski T, Cegielska-Radziejewska R, Goral T, Kurasiak-Popowska D, Stuper-Szablewska K. Assessment of antimicrobial properties of phenolic acid extracts from grain infected with fungi from the genus. Fusarium 2022;27(5):1741-62. https://doi.org/10.3390/molecules27051741
  29. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 2006;103:626-31. https://doi.org/10.1073/pnas.0507535103.
  30. Jonkers W, Rodrigues CD, Rep M. Impaired colonization and infection of tomato roots by the deltafrp1 mutant of Fusarium oxysporum correlates with reduced CWDE gene expression. Molecular plant-microbe interactions 2009;22(5):507-18. https://doi.org/10.1094/MPMI-22-5-0507.
  31. Zwetsloot MJ, Kessler A, Bauerle TL. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol 2018;2(21):156-78. https://doi.org/10.1111/nph.15041.
  32. Schoneberg T, Kibler K, Sulyok M, Musa T, Bucheli TD, Mascher F, Bertossa M, Voegele RT, Vogelgsang S. Can plant phenolic compounds reduce fusarium growth and mycotoxin production in cereals? Food Addit Contam 2018:1-16. https://doi.org/10.1080/19440049.2018.1538570.