• Title/Summary/Keyword: Path-planning

Search Result 1,166, Processing Time 0.03 seconds

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach

  • Lian, Feng-Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.401-412
    • /
    • 2008
  • This paper discusses a design methodology of cooperative path planning for dynamical multi-agent systems with spatial and temporal constraints. The cooperative behavior of the multi-agent systems is specified in terms of the objective function in an optimization formulation. The path of achieving cooperative tasks is then generated by the optimization formulation constructed based on a differential flatness approach. Three scenarios of multi-agent tasking are proposed at the cooperative task planning framework. Given agent dynamics, both spatial and temporal constraints are considered in the path planning. The path planning algorithm first finds trajectory curves in a lower-dimensional space and then parameterizes the curves by a set of B-spline representations. The coefficients of the B-spline curves are further solved by a sequential quadratic programming solver to achieve the optimization objective and satisfy these constraints. Finally, several illustrative examples of cooperative path/task planning are presented.

Path Planning for an Intelligent Robot Using Flow Networks (플로우 네트워크를 이용한 지능형 로봇의 경로계획)

  • Kim, Gook-Hwan;Kim, Hyung;Kim, Byoung-Soo;Lee, Soon-Geul
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.255-262
    • /
    • 2011
  • Many intelligent robots have to be given environmental information to perform tasks. In this paper an intelligent robot, that is, a cleaning robot used a sensor fusing method of two sensors: LRF and StarGazer, and then was able to obtain the information. Throughout wall following using laser displacement sensor, LRF, the working area is built during the robot turn one cycle around the area. After the process of wall following, a path planning which is able to execute the work effectively is established using flow network algorithm. This paper describes an algorithm for minimal turning complete coverage path planning for intelligent robots. This algorithm divides the whole working area by cellular decomposition, and then provides the path planning among the cells employing flow networks. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The proposed algorithm is applied to two different working areas, and verified that it is an optimal path planning method.

Path Planning of an Autonomous Mobile Robot Based on Genetic Algorithms (유전알고리즘을 이용한 자율이동로봇의 경로계획)

  • Lee, D.H.;Lee, D.H.;Lee, M.H.;Be, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2846-2848
    • /
    • 2000
  • In this paper we propose a path planning method for an autonomous mobile robot based on genetic algorithms(GAs). There have been a number of methods proposed for the path planning of a mobile robot. However, few algorithms have been developed for an on-line path planning of a mobile robot with the uncertain information of a task environment. Therefore, we propose a path planning algorithms based on GAs that has ability of creating path planning without the perfect information of a task environment and an ability of planning the efficient path by on-line process. Then we show a possibility of the practical use with the results of simulations and experiments.

  • PDF

Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain (무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획)

  • Yun, SeungJae;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.

Efficient Path Planning of a High DOF Multibody Robotic System using Adaptive RRT (Adaptive RRT를 사용한 고 자유도 다물체 로봇 시스템의 효율적인 경로계획)

  • Kim, Dong-Hyung;Choi, Youn-Sung;Yan, Rui-Jun;Luo, Lu-Ping;Lee, Ji Yeong;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-264
    • /
    • 2015
  • This paper proposes an adaptive RRT (Rapidly-exploring Random Tree) for path planning of high DOF multibody robotic system. For an efficient path planning in high-dimensional configuration space, the proposed algorithm adaptively selects the robot bodies depending on the complexity of path planning. Then, the RRT grows only using the DOFs corresponding with the selected bodies. Since the RRT is extended in the configuration space with adaptive dimensionality, the RRT can grow in the lower dimensional configuration space. Thus the adaptive RRT method executes a faster path planning and smaller DOF for a robot. We implement our algorithm for path planning of 19 DOF robot, AMIRO. The results from our simulations show that the adaptive RRT-based path planner is more efficient than the basic RRT-based path planner.

Optimal Path Planning Algorithm for Visiting Multiple Mission Points in Dynamic Environments (동적 변화 환경에서 다중 임무점 방문을 위한 최적 경로 계획 알고리즘)

  • Lee, Hohyeong;Chang, Woohyuk;Jang, Hwanchol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.379-387
    • /
    • 2019
  • The complexity of path planning for visiting multiple mission points is even larger than that of single pair path planning. Deciding a path for visiting n mission points requires conducting $n^2+n$ times of single pair path planning. We propose Multiple Mission $D^*$ Lite($MMD^*L$) which is an optimal path planning algorithm for visiting multiple mission points in dynamic environments. $MMD^*L$ reduces the complexity by reusing the computational data of preceding single pair path planning. Simulation results show that the complexity reduction is significant while its path optimality is not compromised.

Smooth Path Planning Method for Autonomous Mobile Robots Using Cardinal Spline (카디널스플라인을 이용한 자율이동로봇의 곡선경로 생성방법)

  • Yoon, Hee-Sang;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.803-808
    • /
    • 2010
  • We propose a smooth path planning method for autonomous mobile robots. Due to nonholonomic constraints by obstacle avoidance, the smooth path planning is a complicated one. We generate smooth path that is considered orientation of robot under nonholonomic constraints. The proposed smooth planning method consists of two steps. Firstly, the initial path composed of straight lines is obtained from V-graph by Dijkstra's algorithm. Then the initial path is transformed by changing the curve. We apply the cardinal spline into the stage of curve generation. Simulation results show a performance of proposed smooth path planning method.

Fast Path Planning Algorithm for Mobile Robot Navigation (모바일 로봇의 네비게이션을 위한 빠른 경로 생성 알고리즘)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • Mobile robots use an environment map of its workspace to complete the surveillance task. However grid-based maps that are commonly used map format for mobile robot navigation use a large size of memory for accurate representation of environment. In this reason, grid-based maps are not suitable for path planning of mobile robots using embedded board. In this paper, we present the path planning algorithm that produce a secure path rapidly. The proposed approach utilizes a hybrid map that uses less memory than grid map and has same efficiency of a topological map. Experimental results show that the fast path planning uses only 1.5% of the time that a grid map based path planning requires. And the results show a secure path for mobile robot.

Path Planning of Autonomous Mobile Robot Based on Fuzzy Logic Control (퍼지로직을 이용한 자율이동로봇의 최적경로계획)

  • Park, Jong-Hun;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2420-2422
    • /
    • 2003
  • In this paper, two Fuzzy Logics for path planning of an autonomous mobile robot are proposed. If a target point is given, such problems regarding the velocity and object recognition are closely related with path to which the mobile robot navigates. Therefore, to ensure safety navigation of the mobile robot for two fuzzy logic parts, path planning considering the surrounding environment was performed in this paper. First, feature points for local and global path are determined by utilizing Cell Decomposition off-line computation. Second, the on-line robot using two Fuzzy Logics navigates around path when it tracks the feature points. We demonstrated optimized path planning only for local path using object recognition fuzzy logic corresponds to domestic situation. Furthermore, when navigating, the robot uses fuzzy logic for velocity and target angle. The proposed algorithms for path planning has been implemented and tested with pioneer-dxe mobile robot.

  • PDF

Path planning in nuclear facility decommissioning: Research status, challenges, and opportunities

  • Adibeli, Justina Onyinyechukwu;Liu, Yong-kuo;Ayodeji, Abiodun;Awodi, Ngbede Junior
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3505-3516
    • /
    • 2021
  • During nuclear facility decommissioning, workers are continuously exposed to high-level radiation. Hence, adequate path planning is critical to protect workers from unnecessary radiation exposure. This work discusses recent development in radioactive path planning and the algorithms recommended for the task. Specifically, we review the conventional methods for nuclear decommissioning path planning, analyze the techniques utilized in developing algorithms, and enumerate the decision factors that should be considered to optimize path planning algorithms. As a major contribution, we present the quantitative performance comparison of different algorithms utilized in solving path planning problems in nuclear decommissioning and highlight their merits and drawbacks. Also, we discuss techniques and critical consideration necessary for efficient application of robots and robotic path planning algorithms in nuclear facility decommissioning. Moreover, we analyze the influence of obstacles and the environmental/radioactive source dynamics on algorithms' efficiency. Finally, we recommend future research focus and highlight critical improvements required for the existing approaches towards a safer and cost-effective nuclear-decommissioning project.