DOI QR코드

DOI QR Code

Path planning in nuclear facility decommissioning: Research status, challenges, and opportunities

  • Adibeli, Justina Onyinyechukwu (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Liu, Yong-kuo (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Ayodeji, Abiodun (State Key Laboratory of Industrial Control Technology, Zhejiang University) ;
  • Awodi, Ngbede Junior (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
  • Received : 2020.07.06
  • Accepted : 2021.05.30
  • Published : 2021.11.25

Abstract

During nuclear facility decommissioning, workers are continuously exposed to high-level radiation. Hence, adequate path planning is critical to protect workers from unnecessary radiation exposure. This work discusses recent development in radioactive path planning and the algorithms recommended for the task. Specifically, we review the conventional methods for nuclear decommissioning path planning, analyze the techniques utilized in developing algorithms, and enumerate the decision factors that should be considered to optimize path planning algorithms. As a major contribution, we present the quantitative performance comparison of different algorithms utilized in solving path planning problems in nuclear decommissioning and highlight their merits and drawbacks. Also, we discuss techniques and critical consideration necessary for efficient application of robots and robotic path planning algorithms in nuclear facility decommissioning. Moreover, we analyze the influence of obstacles and the environmental/radioactive source dynamics on algorithms' efficiency. Finally, we recommend future research focus and highlight critical improvements required for the existing approaches towards a safer and cost-effective nuclear-decommissioning project.

Keywords

Acknowledgement

This research work was funded by Harbin Engineering University. We also acknowledge the technical support project for Suzhou Nuclear Power Research Institute (SNPI) (NO.029-GN-B2018-C45-P.0.99-00003), the Foundation of Science and Technology on Reactor System Design Technology Laboratory (HT-KFKT-14-2017003) and the project of Research Institute of Nuclear Power Operation (No.RIN180149-SCCG).

References

  1. S. Rimkevicius, M. Vaisnoras, E. Babilas, E. Uspuras, HAZOP application for the nuclear power plants decommissioning projects, Ann. Nucl. Energy 94 (2016) 461-471. https://doi.org/10.1016/j.anucene.2016.04.027
  2. R. Storms, S. Walker, Interstate technology regulatory Council - decontamination and decommissioning of radiologically-contaminated facilities guidance - 9118, in: WM2009 Conference, Phoenix, AZ, USA, 2009.
  3. N. Chao, Y.-k. Liu, H. Xia, C.-l. Xie, A. Ayodeji, H. Yang, L. Bai, A sampling-based method with virtual reality technology to provide minimum dose path navigation for occupational workers in nuclear facilities, Prog. Nucl. Energy 100 (2017) 22-32. https://doi.org/10.1016/j.pnucene.2017.05.024
  4. G.E. Mathew, Direction based heuristic for pathfinding in video games, Procedia Comput. Sci. 47 (2015) 262-271. https://doi.org/10.1016/j.procs.2015.03.206
  5. N. Chao, Y.-k. Liu, H. Xia, M.-j. Peng, A. Ayodeji, DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments, Nucl. Eng. Technol. (2018) 1-12.
  6. N. Chao, Y.-k. Liu, H. Xia, L. Bai, Minimum dose path planning in complex radioactive environments with sampling-based algorithms, in: 25th International Conference on Nuclear Engineering, Shanghai, China, 2017, pp. 1-7.
  7. N. Chao, Y.-k. Liu, H. Xia, A. Ayodeji, L. Bai, Grid-based RRT for minimum dose walking path-planning in complex radioactive environments, Ann. Nucl. Energy 115 (2018) 73-82. https://doi.org/10.1016/j.anucene.2018.01.007
  8. J.F. Briesmeister, MCNP-A General Monte Catlo N-Particle Transport Code, 2000, p. 790.
  9. A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle Transport code, SLAC-R- 773 (2005) 406.
  10. G. 4, Physics Reference Manual, GEANT 4 Working Group, CERN, 2004.
  11. R. V.G, A. N.A, G. I.O, R. Y.V, Efficiency of the dose rate calculation by Monte-Carlo method and point kernel method when handling radioactive waste, Atom. Energy 114 (2) (2018) 63-69.
  12. C. Devillers, MERCURE 3 Programme., Rapport C. E. A. - R., vol. 3264, Fontenay-aus-Roses, 1967.
  13. MicroShield package. https://en.freedownloadmanager.org/Windows-PC/search/microshield.
  14. V.R. C, The Combinatorial Geometry Version of the QAD-P5a, A Point Kernel Code for Neutron and Gamma Ray Shielding Calculations, 1977.
  15. L.Q. Yang, Y.K. Liu, M.J. Peng, M.K. Li, A gamma-ray dose rate assessment method for arbitrary shape geometries based on voxelization algorithm, Radiat. Phys. Chem. 158 (2019) 122-130. https://doi.org/10.1016/j.radphyschem.2019.02.015
  16. L.-q. Yang, Y.-k. Liu, M.-j. Peng, M.-k. Li, N. Chao, A Fast Gamma-Ray Dose Rate Assessment Method for Complex Geometries Based on Stylized Model Reconstruction, Nuclear Engineering and Technology, 2019.
  17. N. Chao, Y.-k. Liu, H. Xia, A. Ayodeji, H. Yang, Adaptive point kernel dose assessment method for cutting simulation on irregular geometries in nuclear facility decommissioning, Radiat. Phys. Chem. 150 (2018) 125-136. https://doi.org/10.1016/j.radphyschem.2018.04.035
  18. I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov, E.V. Rudychev, D.V. Fedorchenko, Point-kernel Method for Radiation Fields Simulation, 2007.
  19. G. Grand Canyon University, Sampling methods, 2019. https://cirt.gcu.edu/research/developmentresources/research_ready/quantresearch/sample_meth.
  20. R. Song, Y. Liu, R. Bucknall, Smoothed A* algorithm for practical unmanned surface vehicle path planning, Appl. Ocean Res. 83 (2019) 9-20. https://doi.org/10.1016/j.apor.2018.12.001
  21. P. Jimdnez, F. Thomas, C. Torras, Collision Detection Algorithms for Motion Planning, Institut de Robbtica i Informktica Industrial, Barcelona, 1998, pp. 1-39.
  22. J. Bialkowski, M. Otte, S. Karaman, E. Frazzoli, Efficient collision checking in sampling-based motion planning via safety certificates, Int. J. Robot Res. 35 (7) (2016) 767-796. https://doi.org/10.1177/0278364915625345
  23. Karaman Sertac, F. Emilio, Sampling-based algorithms for optimal motion planning, in: C. Massachusetts Institute of Technology (Ed.), Int. J. Robot. Res., 2016.
  24. K. L.E, P. S, L. J.C, O. M.H, Probabilistic roadmaps for path planning in high dimensional configuration spaces, IEEE Trans. Robot. Autom. 12 (4) (1996) 566-580. https://doi.org/10.1109/70.508439
  25. L.E. K, M.N. K, J.C. L, Analysis of probabilistic roadmaps for path planning, IEEE Trans. Robot. Autom. 14 (1) (1998) 166-171. https://doi.org/10.1109/70.660866
  26. A.-Q. Alzalloum, Application of Shortest Path Algorithms to Find Paths of Minimum Radiation Dose, University of Illinois, Urbana-Champaign, 2009, p. 139.
  27. D. E.W, A note on two problems in connexion with graphs, Numerische Mathematik 1, 1959, pp. 269-271. https://doi.org/10.1007/BF01386390
  28. P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100-107. https://doi.org/10.1109/TSSC.1968.300136
  29. R. Glasius, A. Komoda, S.C.A.M. Gielen, Neural network dynamics for path planning and obstacle avoidance, Neural Network. 8 (1) (1995) 125-133. https://doi.org/10.1016/0893-6080(94)E0045-M
  30. S. Mirjalili, J. Song Dong, A.S. Sadiq, H. Faris, Genetic Algorithm: Theory, Literature Review, and Application in Image Reconstruction, Studies in Computational Intelligence, 2020, pp. 69-85.
  31. Y.-k. Liu, M.-k. Li, C.-L. Xie, M.-j. Peng, F. Xie, Path-planning research in radioactive environment based on particle swarm algorithm, Prog. Nucl. Energy 105 (2014) 184-192.
  32. M. Dorigo, C. Blum, Ant colony optimization theory: a survey Theoretical, Comput. Sci. 344 (2005), 243278.
  33. L. Yang, J. Qi, D. Song, J. Xiao, J. Han, Y. Xia, Survey of robot 3D path planning algorithms, Contr. Sci. Eng. (2016) 1-23.
  34. Z. Wang, J. Cai, Probabilistic roadmap method for path-planning in radioactive environment of nuclear facilities, Prog. Nucl. Energy 109 (2018) 113-120. https://doi.org/10.1016/j.pnucene.2018.08.006
  35. J. Kennedy, R. Eberhart, Particle Swarm Optimization, International Conference on Neural Networks, IEEE, Perth, WA Australia, 1995, pp. 1942-1948.
  36. Z. Wang, J. Cai, The path-planning in radioactive environment of nuclear facilities using an improved particle swarm optimization algorithm, Nucl. Eng. Des. 326 (2018) 79-86. https://doi.org/10.1016/j.nucengdes.2017.11.006
  37. Y.K. Liu, M.K. Li, C.L. Xie, M.J. Peng, S.Y. Wang, N. Chao, Z.K. Liu, Minimum dose method for walking-path planning of nuclear facilities, Ann. Nucl. Energy 83 (2015) 161-171. https://doi.org/10.1016/j.anucene.2015.04.019
  38. Y.K. Liu, M.K. Li, M.J. Peng, C.L. Xie, C.Q. Yuan, S.Y. Wang, N. Chao, Walking path-planning method for multiple radiation areas, Ann. Nucl. Energy 94 (2016) 808-813. https://doi.org/10.1016/j.anucene.2016.04.043
  39. M.-k. Li, Y.-k. Liu, M.-j. Peng, C.-l. Xie, S.-y. Wang, N. Chao, Z.-b. Wen, Dynamic minimum dose path-searching method for virtual nuclear facilities, Prog. Nucl. Energy 91 (2016) 1-8. https://doi.org/10.1016/j.pnucene.2016.04.001
  40. D. Silver, Cooperative Pathfinding, University of Alberta, Edmonton, Canada, 2005.
  41. T. Standley, R. Korf, Complete algorithms for cooperative pathfinding problems, in: International Joint Conference on Artificial Intelligence, University of California, Los Angeles, 2011, pp. 668-673.
  42. M.G. Mohanan, A. Salgoankar, A survey of robotic motion planning in dynamic environments, Robot. Autonom. Syst. 100 (2018) 171-185. https://doi.org/10.1016/j.robot.2017.10.011
  43. I. Al-Bluwi, T. Simeon, J. Cortes, Motion planning algorithms for molecular simulations: a survey, Comput. Sci. 6 (2012) 125-143.
  44. I. Tsitsimpelis, C.J. Taylor, B. Lennox, M.J. Joyce, A review of ground-based robotic systems for the characterization of nuclear environments, Prog. Nucl. Energy 111 (2019) 109-124. https://doi.org/10.1016/j.pnucene.2018.10.023
  45. B. Bird, A. Griffiths, H. Martin, E. Codres, J. Jones, A. Stancu, B. Lennox, S. Watson, X. Poteau, Radiological monitoring of nuclear facilities using the continuous autonomous radiation monitoring assistance (CARMA) robot, in: IEEE Robotics & Automation Magazine, 2018, pp. 1-10.
  46. W.N. News, Robots get smarter to help with decommissioning, 2018. http://www.world-nuclear-news.org/WRRobots-get-smarter-to-help-withdecommissioning-0405184.html.
  47. X. Huang, F. Arvin, C. West, S. Watson, B. Lennox, Exploration in Extreme Environments with Swarm Robotic System, IEEE International Conference on Mechatronics, Germany, Ilmenau, 2019, pp. 1-6.
  48. K. Groves, A. West, K. Gornicki, S. Watson, J. Carrasco, B. Lennox, MallARD: an autonomous aquatic surface vehicle for inspection and monitoring of wet nuclear storage facilities, Robotics 8 (47) (2019) 1-17.
  49. R. Bogue, Robots in the nuclear industry: a review of technologies and applications, Ind. Robot 38 (2) (2011) 113-118. https://doi.org/10.1108/01439911111106327
  50. U. UK, Research and Innovation, Robotics and Artificial Intelligence for Nuclear, RAIN, 2019. https://gtr.ukri.org/projects?ref=EP%2FR026084%2F1.
  51. M. Nazarahari, E. Khanmirza, S. Doostie, Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm, Expert Syst. Appl. 115 (2019) 106-120. https://doi.org/10.1016/j.eswa.2018.08.008

Cited by

  1. Minimum dose path planning based on three-degree vertex algorithm and FLUKA modeling: Radiation source discrimination and shielding considerations vol.168, 2021, https://doi.org/10.1016/j.anucene.2021.108916