DOI QR코드

DOI QR Code

Optimal Path Planning Algorithm for Visiting Multiple Mission Points in Dynamic Environments

동적 변화 환경에서 다중 임무점 방문을 위한 최적 경로 계획 알고리즘

  • Received : 2018.10.02
  • Accepted : 2019.04.24
  • Published : 2019.05.01

Abstract

The complexity of path planning for visiting multiple mission points is even larger than that of single pair path planning. Deciding a path for visiting n mission points requires conducting $n^2+n$ times of single pair path planning. We propose Multiple Mission $D^*$ Lite($MMD^*L$) which is an optimal path planning algorithm for visiting multiple mission points in dynamic environments. $MMD^*L$ reduces the complexity by reusing the computational data of preceding single pair path planning. Simulation results show that the complexity reduction is significant while its path optimality is not compromised.

다중 임무점 방문을 위한 경로 계획의 복잡도는 단일 구간 경로 계획을 위한 복잡도보다 크게 더 높다. n개의 다중 임무점을 방문하는 경로 계획을 위해서는 $n^2+n$번의 단일 구간 경로 계획이 필요하다. 본 논문에서는 동적 변화 환경에서 다중 임무점을 방문하기 위한 최적의 경로 계획 알고리즘인 Multiple Mission $D^*$ Lite($MMD^*L$) 알고리즘을 제안하였다. $MMD^*L$은 앞서 수행된 단일 구간 경로 계획 정보를 재사용함으로써 복잡도를 감소시킨다. 시뮬레이션 결과를 통해 경로의 최적성은 양보하지 않으면서도 복잡도가 급격하게 감소하였음을 확인하였다.

Keywords

References

  1. Laporte, G., "The Traveling Salesman Problem: An Overview of Exact and Approximate Algorithms," European Journal of Operational Research, Vol. 59, No. 2, 1992, pp.231-247. https://doi.org/10.1016/0377-2217(92)90138-Y
  2. Dorigo, M., and Gambardella, L. M., "Ant Colonies for the Travelling Salesman Problem," BioSystems, Vol. 43, No. 2, July 1997, pp.73-81. https://doi.org/10.1016/S0303-2647(97)01708-5
  3. Erube, J. F., Michel, G., and Jean-yves, P., "An Exact e-constraint Method for Bi-objective Combinational Optimization Problems : Application to the Travelling Salesman Problem with Profits," European Journal of Operational Research, Vol. 194, No. 1, 2009, pp.39-50. https://doi.org/10.1016/j.ejor.2007.12.014
  4. Simeon, T., Laumond, J. P., and Nissoux, C., "Visibility-based Probabilistic Roadmaps for Motion Planning," Advanced Robotics, Vol. 14, No. 6, April 2000, pp.477-493. https://doi.org/10.1163/156855300741960
  5. Koenig, S., and Likhachev, M., "Fast Replanning for Navigation in Unknown Terrain," IEEE Transactions on Robotics, Vol. 21, No. 3, June 2005, pp.354-363. https://doi.org/10.1109/TRO.2004.838026
  6. Stentz, A., "The Focussed D* Algorithm for Real-time Replanning," Proceedings of International Joint Conference on Artificial Intelligence(IJCAI), 1995, pp.1652-1659.
  7. Koenig, S., Likhachev, M., Liu, Y., and Furcy, D., "Incremental Heuristic Search in AI," AI Magazine, Vol. 25, No. 2, 2004, pp.99-112.
  8. Brumitt, B. L., and Stentz, A., "GRAMMPS : A Generalized Mission Planning for Multiple Mobile Robots in Unstructed Environments," Proceedings of IEEE International Conference on Robotics & Automation, 1998, pp.1564-1571.
  9. Ferguson, D., and Stentz, A., "Using Interpolation to Improve Path Planning: The Field D* Algorithm," Journal of Field Robotics, Vol. 23, No. 2, 2006, pp.79-101. https://doi.org/10.1002/rob.20109
  10. Carsten, J., Rankin, A., Ferguson, D., and Stentz, A., "Global Path Planning on Board the Mars Exploration Rovers," IEEE Aerospace Conference, 2007, pp.1-11.
  11. Hart, P. E., Nilsson, N. J., and Raphael, B., "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics, Vol. 4, No. 2, July 1968, pp.100-107. https://doi.org/10.1109/TSSC.1968.300136
  12. Lee, H., Jang, H., and Jo, Y., "Multiple Mission D*Lite : Optimal Pathfinding Algorithm for Multiple Mission Points," Avionics Systems Symposium Korea, 2018, pp.205.
  13. http://www.koreaaero.com/business/uav.asp