Browse > Article
http://dx.doi.org/10.1016/j.net.2021.05.038

Path planning in nuclear facility decommissioning: Research status, challenges, and opportunities  

Adibeli, Justina Onyinyechukwu (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Liu, Yong-kuo (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Ayodeji, Abiodun (State Key Laboratory of Industrial Control Technology, Zhejiang University)
Awodi, Ngbede Junior (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Publication Information
Nuclear Engineering and Technology / v.53, no.11, 2021 , pp. 3505-3516 More about this Journal
Abstract
During nuclear facility decommissioning, workers are continuously exposed to high-level radiation. Hence, adequate path planning is critical to protect workers from unnecessary radiation exposure. This work discusses recent development in radioactive path planning and the algorithms recommended for the task. Specifically, we review the conventional methods for nuclear decommissioning path planning, analyze the techniques utilized in developing algorithms, and enumerate the decision factors that should be considered to optimize path planning algorithms. As a major contribution, we present the quantitative performance comparison of different algorithms utilized in solving path planning problems in nuclear decommissioning and highlight their merits and drawbacks. Also, we discuss techniques and critical consideration necessary for efficient application of robots and robotic path planning algorithms in nuclear facility decommissioning. Moreover, we analyze the influence of obstacles and the environmental/radioactive source dynamics on algorithms' efficiency. Finally, we recommend future research focus and highlight critical improvements required for the existing approaches towards a safer and cost-effective nuclear-decommissioning project.
Keywords
Nuclear decommissioning; Path planning; Radiation protection; Algorithms; Robotics; Dose assessment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Al-Bluwi, T. Simeon, J. Cortes, Motion planning algorithms for molecular simulations: a survey, Comput. Sci. 6 (2012) 125-143.
2 W.N. News, Robots get smarter to help with decommissioning, 2018. http://www.world-nuclear-news.org/WRRobots-get-smarter-to-help-withdecommissioning-0405184.html.
3 U. UK, Research and Innovation, Robotics and Artificial Intelligence for Nuclear, RAIN, 2019. https://gtr.ukri.org/projects?ref=EP%2FR026084%2F1.
4 M. Nazarahari, E. Khanmirza, S. Doostie, Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm, Expert Syst. Appl. 115 (2019) 106-120.   DOI
5 S. Rimkevicius, M. Vaisnoras, E. Babilas, E. Uspuras, HAZOP application for the nuclear power plants decommissioning projects, Ann. Nucl. Energy 94 (2016) 461-471.   DOI
6 R. V.G, A. N.A, G. I.O, R. Y.V, Efficiency of the dose rate calculation by Monte-Carlo method and point kernel method when handling radioactive waste, Atom. Energy 114 (2) (2018) 63-69.
7 Y.K. Liu, M.K. Li, C.L. Xie, M.J. Peng, S.Y. Wang, N. Chao, Z.K. Liu, Minimum dose method for walking-path planning of nuclear facilities, Ann. Nucl. Energy 83 (2015) 161-171.   DOI
8 S. Mirjalili, J. Song Dong, A.S. Sadiq, H. Faris, Genetic Algorithm: Theory, Literature Review, and Application in Image Reconstruction, Studies in Computational Intelligence, 2020, pp. 69-85.
9 I. Tsitsimpelis, C.J. Taylor, B. Lennox, M.J. Joyce, A review of ground-based robotic systems for the characterization of nuclear environments, Prog. Nucl. Energy 111 (2019) 109-124.   DOI
10 B. Bird, A. Griffiths, H. Martin, E. Codres, J. Jones, A. Stancu, B. Lennox, S. Watson, X. Poteau, Radiological monitoring of nuclear facilities using the continuous autonomous radiation monitoring assistance (CARMA) robot, in: IEEE Robotics & Automation Magazine, 2018, pp. 1-10.
11 Z. Wang, J. Cai, The path-planning in radioactive environment of nuclear facilities using an improved particle swarm optimization algorithm, Nucl. Eng. Des. 326 (2018) 79-86.   DOI
12 T. Standley, R. Korf, Complete algorithms for cooperative pathfinding problems, in: International Joint Conference on Artificial Intelligence, University of California, Los Angeles, 2011, pp. 668-673.
13 X. Huang, F. Arvin, C. West, S. Watson, B. Lennox, Exploration in Extreme Environments with Swarm Robotic System, IEEE International Conference on Mechatronics, Germany, Ilmenau, 2019, pp. 1-6.
14 D. E.W, A note on two problems in connexion with graphs, Numerische Mathematik 1, 1959, pp. 269-271.   DOI
15 P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100-107.   DOI
16 Y.-k. Liu, M.-k. Li, C.-L. Xie, M.-j. Peng, F. Xie, Path-planning research in radioactive environment based on particle swarm algorithm, Prog. Nucl. Energy 105 (2014) 184-192.
17 K. Groves, A. West, K. Gornicki, S. Watson, J. Carrasco, B. Lennox, MallARD: an autonomous aquatic surface vehicle for inspection and monitoring of wet nuclear storage facilities, Robotics 8 (47) (2019) 1-17.
18 R. Bogue, Robots in the nuclear industry: a review of technologies and applications, Ind. Robot 38 (2) (2011) 113-118.   DOI
19 L. Yang, J. Qi, D. Song, J. Xiao, J. Han, Y. Xia, Survey of robot 3D path planning algorithms, Contr. Sci. Eng. (2016) 1-23.
20 Z. Wang, J. Cai, Probabilistic roadmap method for path-planning in radioactive environment of nuclear facilities, Prog. Nucl. Energy 109 (2018) 113-120.   DOI
21 M.-k. Li, Y.-k. Liu, M.-j. Peng, C.-l. Xie, S.-y. Wang, N. Chao, Z.-b. Wen, Dynamic minimum dose path-searching method for virtual nuclear facilities, Prog. Nucl. Energy 91 (2016) 1-8.   DOI
22 D. Silver, Cooperative Pathfinding, University of Alberta, Edmonton, Canada, 2005.
23 M.G. Mohanan, A. Salgoankar, A survey of robotic motion planning in dynamic environments, Robot. Autonom. Syst. 100 (2018) 171-185.   DOI
24 A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle Transport code, SLAC-R- 773 (2005) 406.
25 R. Storms, S. Walker, Interstate technology regulatory Council - decontamination and decommissioning of radiologically-contaminated facilities guidance - 9118, in: WM2009 Conference, Phoenix, AZ, USA, 2009.
26 N. Chao, Y.-k. Liu, H. Xia, C.-l. Xie, A. Ayodeji, H. Yang, L. Bai, A sampling-based method with virtual reality technology to provide minimum dose path navigation for occupational workers in nuclear facilities, Prog. Nucl. Energy 100 (2017) 22-32.   DOI
27 R. Song, Y. Liu, R. Bucknall, Smoothed A* algorithm for practical unmanned surface vehicle path planning, Appl. Ocean Res. 83 (2019) 9-20.   DOI
28 N. Chao, Y.-k. Liu, H. Xia, M.-j. Peng, A. Ayodeji, DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments, Nucl. Eng. Technol. (2018) 1-12.
29 N. Chao, Y.-k. Liu, H. Xia, L. Bai, Minimum dose path planning in complex radioactive environments with sampling-based algorithms, in: 25th International Conference on Nuclear Engineering, Shanghai, China, 2017, pp. 1-7.
30 J.F. Briesmeister, MCNP-A General Monte Catlo N-Particle Transport Code, 2000, p. 790.
31 J. Kennedy, R. Eberhart, Particle Swarm Optimization, International Conference on Neural Networks, IEEE, Perth, WA Australia, 1995, pp. 1942-1948.
32 V.R. C, The Combinatorial Geometry Version of the QAD-P5a, A Point Kernel Code for Neutron and Gamma Ray Shielding Calculations, 1977.
33 Karaman Sertac, F. Emilio, Sampling-based algorithms for optimal motion planning, in: C. Massachusetts Institute of Technology (Ed.), Int. J. Robot. Res., 2016.
34 A.-Q. Alzalloum, Application of Shortest Path Algorithms to Find Paths of Minimum Radiation Dose, University of Illinois, Urbana-Champaign, 2009, p. 139.
35 R. Glasius, A. Komoda, S.C.A.M. Gielen, Neural network dynamics for path planning and obstacle avoidance, Neural Network. 8 (1) (1995) 125-133.   DOI
36 M. Dorigo, C. Blum, Ant colony optimization theory: a survey Theoretical, Comput. Sci. 344 (2005), 243278.
37 Y.K. Liu, M.K. Li, M.J. Peng, C.L. Xie, C.Q. Yuan, S.Y. Wang, N. Chao, Walking path-planning method for multiple radiation areas, Ann. Nucl. Energy 94 (2016) 808-813.   DOI
38 N. Chao, Y.-k. Liu, H. Xia, A. Ayodeji, L. Bai, Grid-based RRT for minimum dose walking path-planning in complex radioactive environments, Ann. Nucl. Energy 115 (2018) 73-82.   DOI
39 C. Devillers, MERCURE 3 Programme., Rapport C. E. A. - R., vol. 3264, Fontenay-aus-Roses, 1967.
40 G.E. Mathew, Direction based heuristic for pathfinding in video games, Procedia Comput. Sci. 47 (2015) 262-271.   DOI
41 G. 4, Physics Reference Manual, GEANT 4 Working Group, CERN, 2004.
42 G. Grand Canyon University, Sampling methods, 2019. https://cirt.gcu.edu/research/developmentresources/research_ready/quantresearch/sample_meth.
43 L.Q. Yang, Y.K. Liu, M.J. Peng, M.K. Li, A gamma-ray dose rate assessment method for arbitrary shape geometries based on voxelization algorithm, Radiat. Phys. Chem. 158 (2019) 122-130.   DOI
44 L.-q. Yang, Y.-k. Liu, M.-j. Peng, M.-k. Li, N. Chao, A Fast Gamma-Ray Dose Rate Assessment Method for Complex Geometries Based on Stylized Model Reconstruction, Nuclear Engineering and Technology, 2019.
45 I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov, E.V. Rudychev, D.V. Fedorchenko, Point-kernel Method for Radiation Fields Simulation, 2007.
46 P. Jimdnez, F. Thomas, C. Torras, Collision Detection Algorithms for Motion Planning, Institut de Robbtica i Informktica Industrial, Barcelona, 1998, pp. 1-39.
47 K. L.E, P. S, L. J.C, O. M.H, Probabilistic roadmaps for path planning in high dimensional configuration spaces, IEEE Trans. Robot. Autom. 12 (4) (1996) 566-580.   DOI
48 L.E. K, M.N. K, J.C. L, Analysis of probabilistic roadmaps for path planning, IEEE Trans. Robot. Autom. 14 (1) (1998) 166-171.   DOI
49 MicroShield package. https://en.freedownloadmanager.org/Windows-PC/search/microshield.
50 J. Bialkowski, M. Otte, S. Karaman, E. Frazzoli, Efficient collision checking in sampling-based motion planning via safety certificates, Int. J. Robot Res. 35 (7) (2016) 767-796.   DOI
51 N. Chao, Y.-k. Liu, H. Xia, A. Ayodeji, H. Yang, Adaptive point kernel dose assessment method for cutting simulation on irregular geometries in nuclear facility decommissioning, Radiat. Phys. Chem. 150 (2018) 125-136.   DOI