• Title/Summary/Keyword: Pasternak

Search Result 306, Processing Time 0.021 seconds

Free Vibration Analysis of Beam-columns Resting on Pasternak Foundation by Differential Quadrature Method (미분구적법에 의한 Pasternak지반 위에 놓인 보-기둥의 자유진동 해석)

  • 이태은;이병구;강희종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.957-962
    • /
    • 2004
  • This paper deals with the free vibration analysis of beam-columns resting on Pasternak foundation by the Differential Quadrature Method. Based on the differential equation subjected to the boundary conditions, adopted from the open literature, which governs the free vibrations of such member, this equation is applied to the Differential Quadrature Method. For computing natural frequencies, the numerical procedures are developed by QR Algorithm, in which the Chebyshev-Gauss-Lobatto method is used for choosing the grid points. The numerical methods developed herein for computing natural frequencies are programmed in FORTRAN code, and all solutions obtained in this study are quite agreed with those in the open literature.

  • PDF

Stability Analysis of Rectangular Plate with Concentrated Mass (집중질량을 갖는 장방형판의 안정해석)

  • 김일중;오숙경;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.805-809
    • /
    • 2004
  • This paper is for the vibration analysis of thick plate with concentrated mass on a inhomogeneous pasternak foundation. The vibration of rectangular plate on the inhomogeneous pasternak foundation, natural frequency of this plate with Concentrated Mass are calculated A thick rectangular plate resting on a inhomogeneous pasternak foundation is isotropic, homogeneous and composite with linearly elastic material. In order to analysis plate which is supported on inhomogeneous pasternak foundation, the value of winkler foundation parameter(WFP) of centural and border zone of plate are chosen as WFP1 and WFP2 respectively. The value of WFP1 and WFP2 can be changed as 10, 10$^3$ and the value of SFP(shear foundation parameter) also be changed 5, 15 respectively.

  • PDF

Free Vibration Analysis of Thick Plates on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓여진 후판의 자유진동해석)

  • 김일중;오숙경;이효진;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.852-857
    • /
    • 2003
  • This paper has the object of investigating natural frequencies of thick plates on inhomogeneous Pasternak foundation by means of finite element method and providing kinematic design data lot mat of building structures. This analysis was applied for design of substructure on elastic foundation. Mat of building structure may be consisdered as a thick plate on elastic foundation. Recently, as size of building structure becomes larger, mat area of building structure also tend to become target and building structure is supported on inhomogeneous foundation. In this paper, vibration analysis or rectangular thick plate is done by use or serendipity finite element with 8 nodes by considering shearing strain of plate. The solutions of this paper are compared with existing solutions and finite element solutions with 4${\times}$4 meshes of this analysis are shown the error of maximum 0.083% about the existing solutions. It is shown that natrural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter.

  • PDF

The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate

  • Boulefrakh, Laid;Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.161-178
    • /
    • 2019
  • In this research, a simple quasi 3D hyperbolic shear deformation model is employed for bending and dynamic behavior of functionally graded (FG) plates resting on visco-Pasternak foundations. The important feature of this theory is that, it includes the thickness stretching effect with considering only 4 unknowns, which less than what is used in the First Order Shear Deformation (FSDT) theory. The visco­Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The equations of motion for thick FG plates are obtained in the Hamilton principle. Analytical solutions for the bending and dynamic analysis are determined for simply supported plates resting on visco-Pasternak foundations. Some numerical results are presented to indicate the effects of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic behavior of rectangular FG plates.

Free Vibrations of Thick Plates with Concentrated Masses on In-homogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓인 집중질량을 갖는 후판의 자유진동)

  • 이용수;이병구;김일중;이태은
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.281-289
    • /
    • 2003
  • Recently, as high-rise buildings increase steeply, sub-structures of them are often supported on in-homogeneous foundation. And there are many machines in sub-structures of buildings, and slabs of sub-structures are affected by vibration which they make. This paper deals with vibration of plates with concentrated masses on in-homogeneous foundation. Machines on plates are considered as concentrated masses. In-homogeneous foundation is considered as assigning $k_{w1}$ and $k_{w2}$ to Winkler foundation parameters of central region and side region of plate respectively, and foundation is idealized to use Pasternak foundation model which considered both of Winkler foundation parameter and shear foundation parameter. In this paper, applying Winkler foundation parameters which $k_{w1}$and $k_{w2}$ are 10, $10^2$, $10^3$ and shear foundation parameter which are 10, 20 respectively, first natural frequencies of thick plates with concentrated masses on in-homogeneous foundations are calculated.

Stability of EG cylindrical shells with shear stresses on a Pasternak foundation

  • Najafov, A.M.;Sofiyev, A.H.;Hui, D.;Karaca, Z.;Kalpakci, V.;Ozcelik, M.
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.453-470
    • /
    • 2014
  • This article is the result of an investigation on the influence of a Pasternak elastic foundation on the stability of exponentially graded (EG) cylindrical shells under hydrostatic pressure, based on the first-order shear deformation theory (FOSDT) considering the shear stresses. The shear stresses shape function is distributed parabolic manner through the shell thickness. The governing equations of EG orthotropic cylindrical shells resting on the Pasternak elastic foundation on the basis of FOSDT are derived in the framework of Donnell-type shell theory. The novelty of present work is to achieve closed-form solutions for critical hydrostatic pressures of EG orthotropic cylindrical shells resting on Pasternak elastic foundation based on FOSDT. The expressions for critical hydrostatic pressures of EG orthotropic cylindrical shells with and without an elastic foundation based on CST are obtained, in special cases. Finally, the effects of Pasternak foundation, shear stresses, orthotropy and heterogeneity on critical hydrostatic pressures, based on FOSDT are investigated.

Effect of Pasternak foundation: Structural modal identification for vibration of FG shell

  • Hussain, Muzamal;Selmi, Abdellatif
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.569-576
    • /
    • 2020
  • Employment of the wave propagation approach with the combination of Pasternak foundation equation gives birth to the shell frequency equation. Mathematically, the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is placed on the elastic foundation of Pasternak. For isotropic materials, the physical properties are same everywhere, whereas the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of the elastic foundation, wave number, length and height-to-radius ratios is investigated with different boundary conditions. The frequencies of length-to-radius and height-to-radius ratio are counter part of each other. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down for the variations of wave number. It is found that due to inducting the elastic foundation of Pasternak, the frequencies increases. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. MATLAB software is utilized for the vibration of functionally graded cylindrical shell with elastic foundation of Pasternak and the results are verified with the open literature.

Dynamic Stability Analysis of Nonconservative Systems for Variable Parameters using FE Method (유한요소기법을 이용한 비보존력이 작용하는 보-기둥 구조의 다양한 제변수 변화에 따른 동적 안정성 해석)

  • Lee Jun-Seok;Min Byoung-Cheol;Kim Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.351-363
    • /
    • 2004
  • Equation of motion of non conservative system considering mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory force's direction change and Winkler and Pasternak foundation stiffness matrix is derived. Also stability analysis due to the divergence and flutter loads is performed. And the influence of internal and external damping coefficient on flutter load is investigated applying the quadratic eigen problem solution. Additionally the influence of non-conservative force's direction parameter, internal and external damping and Winkler and Pasternak foundation on the critical load of Beck's and Leipholz's and Hauger's columns are investigated.

Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory

  • Rouabhia, Abdelkrim;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Heireche, Houari;Tounsi, Abdeldjebbar;Kouider Halim, Benrahou;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.695-709
    • /
    • 2020
  • The buckling properties of a single-layered graphene sheet (SLGS) are examined using nonlocal integral first shear deformation theory (FSDT) by incorporating the influence of visco-Pasternak's medium. This model contains only four variables, which is even less than the conventional FSDT. The visco-Pasternak's medium is introduced by considering the damping influence to the conventional foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The nanoplate under consideration is subjected to compressive in- plane edge loads per unit length. The impacts of many parameters such as scale parameter, aspect ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the stability investigation of the SLGSs are examined in detail. The obtained results are compared with the corresponding available in the literature.

Dynamic Stability Analysis of Non-conservative Systems under Pasternak Elastic Foundations (Pasternak 탄성지지 하에서 비보존력계의 동적 안정성해석)

  • 이준석;김남일;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.73-80
    • /
    • 2004
  • Mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory non-conservative force, and Winkler and Pasternak foundation matrix of framed structure in 2-D are calculated for stability analysis of divergence or flutter system. Then, a matrix equation of the motion for the non-conservative system is formulated and numerical results are presented to demonstrate the effect of some parameters with using Newmark method.

  • PDF