Browse > Article
http://dx.doi.org/10.12989/scs.2020.37.6.695

Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory  

Rouabhia, Abdelkrim (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Chikh, Abdelbaki (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Heireche, Houari (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Tounsi, Abdeldjebbar (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Kouider Halim, Benrahou (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Al-Zahrani, Mesfer Mohammad (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Publication Information
Steel and Composite Structures / v.37, no.6, 2020 , pp. 695-709 More about this Journal
Abstract
The buckling properties of a single-layered graphene sheet (SLGS) are examined using nonlocal integral first shear deformation theory (FSDT) by incorporating the influence of visco-Pasternak's medium. This model contains only four variables, which is even less than the conventional FSDT. The visco-Pasternak's medium is introduced by considering the damping influence to the conventional foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The nanoplate under consideration is subjected to compressive in- plane edge loads per unit length. The impacts of many parameters such as scale parameter, aspect ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the stability investigation of the SLGSs are examined in detail. The obtained results are compared with the corresponding available in the literature.
Keywords
nonuniform stability; Integral FSDT; nonlocal shear deformation model; visco-Pasternak's medium;
Citations & Related Records
Times Cited By KSCI : 60  (Citation Analysis)
연도 인용수 순위
1 Mantari, J.L. and Granados, E.V. (2015), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin-Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.   DOI
2 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. http://dx.doi.org/10.12989/anr.2019.7.3.181.   DOI
3 Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.   DOI
4 Mohammad-Abadi, M. and Daneshmehr, A.R. (2014), "Size dependent buckling analysis of microbeams based on modified couple stress theory with higher order theories and general boundary conditions", Int. J. Eng. Sci., 74, 1-14. https://doi.org/10.1016/j.ijengsci.2013.08.010.   DOI
5 Mohammadi, M., Farajpour, A., Goodarzi, M. and Shehni nezhadpour, H. (2014), "Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium", Comput. Mater. Sci., 82, 510-520. https://doi.org/10.1016/j.commatsci.2013.10.022.   DOI
6 Murmu, T. and Adhikari, S. (2013), "Nonlocal mass nanosensors based on vibrating monolayer graphene sheets", Sensors Actuat. B: Chemical, 188, 1319-1327. https://doi.org/10.1016/j.snb.2013.07.051.   DOI
7 Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004.   DOI
8 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. doi:10.1007/s00707-013-0883-5.   DOI
9 Akgoz, B. and Civalek, O. (2014), "A new trigonometric beam model for buckling of strain gradient microbeams", Int. J. Mech. Sci., 81, 88-94. doi:10.1016/j.ijmecsci.2014.02.013.   DOI
10 Akgoz, B. and Civalek, O. (2012), "Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory", Mater. Design, 42, 164-171. https://doi.org/10.1016/j.matdes.2012.06.002.   DOI
11 Analooei, H.R., Azhari, M. and Heidarpour, A. (2013), "Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method", Appl. Math. Model., 37, 6703-6717. https://doi.org/10.1016/j.apm.2013.01.051.   DOI
12 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.   DOI
13 Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326, 277-289. doi:10.1016/j.jsv.2009.04.044.   DOI
14 Ansari, R. and Sahmani, S. (2013), "Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations", Appl. Math. Model., 37, 7338-7351. https://doi.org/10.1016/j.apm.2013.03.004.   DOI
15 Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. http://dx.doi.org/10.12989/anr.2019.7.5.365.   DOI
16 Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the Vibrations and Stability of Moving Viscoelastic Axially Functionally Graded Nanobeams", Materials, 13(7), 1707. doi:10.3390/ma13071707.   DOI
17 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.   DOI
18 Timesli, A. (2020a), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053   DOI
19 Timesli, A. (2020b), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. https://doi.org/10.1007/s42452-020-2182-9.   DOI
20 Ansari, R. and Rouhi, H. (2012), "Explicit analytical expressions for the critical buckling stresses in a monolayer graphene based on nonlocal elasticity", Solid State Commun., 152, 56-59. https://doi.org/10.1016/j.ssc.2011.11.004.   DOI
21 Pouresmaeeli, S., Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium", Compos. Struct., 96, 405-410. https://doi.org/10.1016/j.compstruct.2012.08.051.   DOI
22 Wang, L. (2010), "Wave propagation of fluid-conveying singlewalled carbon nanotubes via gradient elasticity theory", Comput. Mater. Sci., 49, 761-766. https://doi.org/10.1016/j.commatsci.2010.06.019.   DOI
23 Nebab, M., Benguediab, S., Ait Atmane, H. and Bernard, F. (2020), ''A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations'', Geomech. Eng., 22(5), 415-431. http://dx.doi.org/10.12989/gae.2020.22.5.415.   DOI
24 Panjehpour, M., Eric Woo Kee Loh and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends civil Eng. Architecture, 3(1) 336-340. Doi:10.32474/TCEIA.2018.03.000151.   DOI
25 Pradhan, S.C. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93, 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004.   DOI
26 Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.   DOI
27 Pradhan, S.C. and Murmu, T. (2009), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47, 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001.   DOI
28 Arash, B., Wang, Q. and Duan, W.H. (2011), "Detection of gas atoms via vibration of graphenes", Phys. Lett. A, 375, 2411-2415. https://doi.org/10.1016/j.physleta.2011.05.009.   DOI
29 Arash, B., Wang, Q. and Liew, K.M. (2012), "Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation", Comput. Method. Appl. M., 223-224, 1-9. https://doi.org/10.1016/j.cma.2012.02.002.   DOI
30 Assadi, A., Farshi, B. and Alinia-ZiaZi, A. (2010), "Size dependent dynamic an alysis of nanoplates", J. Appl. Phys., 107, 124310. https://doi.org/10.1063/1.3437041.   DOI
31 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://dx.doi.org/10.12989/scs.2019.30.6.603.   DOI
32 Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Design, 3(3), 289-302. http://dx.doi.org/10.12989/acd.2018.3.3.289.   DOI
33 Barati, M.R. (2017), "Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading", Appl. Phys. A., 123, 332. https://doi.org/10.1007/s00339-017-0908-3.   DOI
34 Basua, S. and Bhattacharyya, P. (2012), "Recent developments on graphene and graphene oxide based solid state gas sensors", Sens. Actuat. B, 173, 1-21. doi:10.1016/j.snb.2012.07.092.   DOI
35 Samaei, A.T., Abbasion, S. and Mirsayar, M.M. (2011), "Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Commun., 38, 481-485. https://doi.org/10.1016/j.mechrescom.2011.06.003.   DOI
36 Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.   DOI
37 Wang, Y.Z. and Li, F.M. (2012), "Static bending behaviors of nanoplate embedded in elastic matrix with small scale effects", Mech. Res. Commun., 41, 44-48. https://doi.org/10.1016/j.mechrescom.2012.02.008.   DOI
38 Zenkour, A.M., (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal firstorder theory", Adv. Nano Res., 4(4), 309-326. http://dx.doi.org/10.12989/anr.2016.4.4.309.   DOI
39 Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", ThinWall. Struct., 150, 106683. https://doi.org/10.1016/j.tws.2020.106683.   DOI
40 Sakhaee-Pour, A., Ahmadian, M.T. and Vafai, A. (2008), "Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors", Solid State Commun., 145, 168-172. https://doi.org/10.1016/j.ssc.2007.10.032.   DOI
41 Sarrami-Foroushani, S. and Azhari, M. (2014), "Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including vander Waals effects", Physica E, 57, 83-95. https://doi.org/10.1016/j.physe.2013.11.002.   DOI
42 Ramirez, D., Cuba, L., Mantari, J. and Arciniega, R. (2019), "Bending and free vibration analysis of functionally graded plates via optimized non-polynomial higher order theories", J. Appl. Comput. Mech., 5(2), 281-298. doi:10.22055/jacm.2018.25177.1237.   DOI
43 Najar, F., El-Borgi, S., Reddy, J.N. and Mrabet, K. (2015), "Nonlinear nonlocal analysis of electrostatic nanoactuators", Compos. Struct., 120, 117-128. https://doi.org/10.1016/j.compstruct.2014.09.058.   DOI
44 Narendar, S. (2011), "Buckling analysis of micro-nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93, 3093-3103. DOI:10.1016/J.COMPSTRUCT.2011.06.028.   DOI
45 Hadji, L. and Avcar, M. (2021), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 1-15. https://doi.org/10.22055/JACM.2020.35328.2628.   DOI
46 Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Design, 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.   DOI
47 Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. http://dx.doi.org/10.12989/anr.2018.6.4.339.   DOI
48 Sayyad, A. and Ghumare, S. (2019), "A New Quasi-3D Model for Functionally Graded Plates", J. Appl. Comput. Mech., 5(2), 367-380. doi: 10.22055/jacm.2018.26739.1353.   DOI
49 Scarpa, F., Adhikari, S., Gil, A.J. and Remillat, C. (2010), "The bending of single layer graphene sheets: The lattic versus continuum approach", Nanotechnology, 21, 125702-1-125702-9. DOI: 10.1088/0957-4484/21/12/125702.   DOI
50 Reddy, C.D., Rajendran, S. and Liew, K.M. (2006), "Equilibrium configuration and continuum elastic properties of finite sized graphene", Nanotechnology, 17, 864-870. https://doi.org/10.1088/0957-4484/17/3/042.   DOI
51 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.   DOI
52 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.   DOI
53 Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006.   DOI
54 Liew, K.M., He, X.Q. and Kitipornchai, S. (2006), "Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix", Acta Materialia, 54, 4229-4236. https://doi.org/10.1016/j.actamat.2006.05.016.   DOI
55 Ji, Y., Choe, M., Cho, B., Song, S., Yoon, J., Ko, H.C., et al. (2012), "Organic nonvolatile memory devices with charge trapping multilayer graphene film", Nanotechnology, 23, 105202. doi: 10.1088/0957-4484/23/10/105202.   DOI
56 Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.   DOI
57 Hosseini-Hashemi, S., Kermajani, M. and Nazemnezhad, R. (2015), "An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory", Eur. J. Mech. A/Solids, 51, 29-43. https://doi.org/10.1016/j.euromechsol.2014.11.005.   DOI
58 Jafari Fesharaki, J. and Roghani, M. (2019), "Elastic Behavior of Functionally Graded Two Tangled Circles Chamber", J. Appl. Comput. Mech., 5(4), 667-679. doi:10.22055/jacm.2019.27058.1372.   DOI
59 Kananipour, H. (2014), "Static analysis of nanoplates based on the nonlocal Kirchhoff and Mindlin plate theories using DQM", Latin Am. J. Solids Struct., 11, 1709-1720. https://doi.org/10.1590/S1679-78252014001000001.   DOI
60 Liu, C.C. and Chen, Z.B. (2014), "Dynamic analysis of finite periodic nanoplate structures with various boundaries", Physica E, 60, 139-146. https://doi.org/10.1016/j.physe.2014.02.016.   DOI
61 Lu, G., Ocola, L.E. and Chen, J. (2009), "Reduced graphene oxide for room-temperature gas sensors", Nanotechnology, 20, 445502. https://doi.org/10.1088/0957-4484/20/44/445502.   DOI
62 Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006.   DOI
63 Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019a), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng, 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.   DOI
64 Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019b), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mec., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269.   DOI
65 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.   DOI
66 Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbsum, D.M., Parpia, J.M., et al. (2007), "Electromechanical resonators from graphene sheets", Science, 315, 490-493. DOI: 10.1126/science.1136836.   DOI
67 Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091   DOI
68 Sedighi, H.M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. doi:10.1016/j.actaastro.2013.10.020.   DOI
69 Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.   DOI
70 Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014.   DOI
71 Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015b), "Modified model for instability analysis of symmetric FGM double-sided nano-bridge: Corrections due to surface layer, finite conductivity and size effect", Compos. Struct., 132, 545-557. doi:10.1016/j.compstruct.2015.05.076.   DOI
72 Sedighi, H.M., Keivani, M. and Abadyan, M. (2015a) "Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect", Compos. Part B: Eng., 83, 117-133. doi:10.1016/j.compositesb.2015.08.029.   DOI
73 Sedighi, H.M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Physica Scripta, 95(6). https://doi.org/10.1088/1402-4896/ab793f.   DOI
74 Lei, Y., Adhikari, S. and Friswell, M.I. (2013), "Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams", Int. J. Eng. Sci., 66-67, 1-13. https://doi.org/10.1016/j.ijengsci.2013.02.004.   DOI
75 Khorshidi, K., Asgari, T. and Fallah, A. (2015), "Free vibrations analysis of functionally graded rectangular nano-plates based on nonlocal exponential shear deformation theory", Mech. Adv. Compos. Struct., 2, 79-93. Doi: 10.22075/MACS.2015.395.   DOI
76 Kong, S., Zhou, S., Nie, Z. and Wang, K. (2009), "Static and dynamic analysis of microbeams based on strain gradient elasticity theory", Int. J. Eng. Sci., 47, 487-498. https://doi.org/10.1016/j.ijengsci.2008.08.008.   DOI
77 Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
78 Ghandourah, E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. http://dx.doi.org/10.12989/scs.2020.36.3.293   DOI
79 Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.   DOI
80 Dai, H.L., Wang, Y.K. and Wang, L. (2015), "Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory", Int. J. Eng. Sci., 94, 103-112. https://doi.org/10.1016/j.ijengsci.2015.05.007.   DOI
81 Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with higher order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011.   DOI
82 Daneshmehr, A., Rajabpoor, A. and Pourdavood, M. (2014), "Stability of size dependent functionally graded nanoplates based on nonlocal elasticity and higher order plate theories and different boundary conditions", Int. J. Eng. Sci., 82, 84-100. https://doi.org/10.1016/j.ijengsci.2014.04.017.   DOI
83 Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Design, 2(1), 57-69. http://dx.doi.org/10.12989/acd.2017.2.1.057.   DOI
84 Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I. and Bachtold, A. (2011), "Nonlinear dampingin mechanical resonators made from carbon nanotubes and graphene", Nature Nanotechnology, 6, 339-342. https://doi.org/10.1038/nnano.2011.71.   DOI
85 El Said, N. and Kassem, A.T. (2018), "Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites", Membrane Water Treatment, 9(5), 327-334. http://dx.doi.org/10.12989/mwt.2018.9.5.327   DOI
86 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001.   DOI
87 Sedighi, H.M. and Malikan, M. (2020), "Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magnetothermal environment", Phys. Scr., 95, 055218. https://doi.org/10.1088/1402-4896/ab7a38.   DOI
88 Sellam, S., Draiche, K., Tlidji, Y., Addou, F.Y. and Benachour, A. (2020), "A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates", Struct. Eng. Mech., 75(2), 157-174. https://doi.org/10.12989/SEM.2020.75.2.157.   DOI
89 Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), ''Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory'', Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.   DOI
90 Ghayesh, M.H. and Farokhi, H. (2015), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004.   DOI
91 Ghorbanpour Arani, A., Abdollahian, M. and Jalaei, M.H. (2015), "Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory", J. Theor. Biology, 367, 29-38. https://doi.org/10.1016/j.jtbi.2014.11.019.   DOI
92 Ghorbanpour Arani, A. and Jalaei, M.H. (2015), "Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach", J. Eng. Math., 98(1), 129-144. doi:10.1007/s10665-015-9814-x.   DOI
93 Ghorbanpour Arani, A. and Jalaei, M.H. (2016), "Transient behavior of an orthotropic graphene sheet resting on orthotropic visco-Pasternak foundation", Int. J. Eng. Sci., 103, 97-113. https://doi.org/10.1016/j.ijengsci.2016.02.006.   DOI
94 Ghorbanpour Arani, A., Maboudi, M.J. and Kolahchi, R. (2014), "Nonlinear vibration analysis of visco elastically coupled DLAGS-system", Eur. J. Mech. A: Solids, 45, 185-197. DOI: 10.1016/j.euromechsol.2013.12.006.   DOI
95 Golmakani, M.E. and Rezatalab, J. (2014), "Nonlinear bending analysis of orthotropic nanoscale plates in an elastic matrix based on nonlocal continuum mechanics", Compos. Struct., 111, 85-97. https://doi.org/10.1016/j.compstruct.2013.12.027.   DOI
96 Golmakani, M.E. and Rezatalab, J. (2015), "Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory", Compos. Struct., 119, 238-250. https://doi.org/10.1016/j.compstruct.2014.08.037.   DOI
97 Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. doi:10.22055/jacm.2019.27857.1439.   DOI
98 Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4, 75-86. DOI :10.22055/JACM.2017.22579.1136.   DOI
99 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
100 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.   DOI
101 Hadji, L. (2020b), "Vibration analysis of FGM beam: Effect of the micromechanical models", Coupled Syst. Mech., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265.   DOI
102 Evoy, S., Carr, D.W., Sekaric, L., Olkhovets, A., Parpia, J.M. and Craighead, H.G. (1999), "Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators", J. Appl. Phys., 86, 6072-6077. https://doi.org/10.1063/1.371656.   DOI
103 Freund, L.B. and Suresh, S. (2003), "Thin film materials", Cambridge: Cambridge University Press.
104 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.   DOI
105 Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240. doi:10.1016/j.amc.2012.09.062.   DOI
106 Hadji, L. (2020a), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253   DOI
107 Hadji, L. and Safa, A. (2020), "Bending analysis of softcore and hardcore functionally graded sandwich beams", Earthq. Struct., 18(4), 481-492. https://doi.org/10.12989/eas.2020.18.4.481.   DOI
108 Ahmed, S.M., Zhou, B., Wang, Y., Yang, H., Zheng, Y.P. and Shi Bin, X. (2020), "Preparation, Characterization of activated carbon fiber (ACF) from loofah and its application in composite vertical flow constructed wetlands for Tetracycline removal from water", Membrane Water Treatment, 11(4), 313-321. http://dx.doi.org/10.12989/mwt.2020.11.4.313.   DOI
109 Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(8), 392. doi:10.1007/s40430-018-1315-1.   DOI
110 Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/ANR.2020.8.4.277.   DOI
111 Akbas, S.D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-243. https://doi.org/10.12989/anr.2018.6.3.219.   DOI