• Title/Summary/Keyword: Particulate emissions

Search Result 340, Processing Time 0.025 seconds

Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan

  • Hayashi, Kentaro;Ono, Keisuke;Matsuda, Kazuhide;Tokida, Takeshi;Hasegawa, Toshihiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.202-216
    • /
    • 2017
  • Nitrogen (N) is an essential macronutrient. Thus, evaluating its flows and stocks in rice paddy ecosystems provides important insights into the sustainability and environmental loads of rice production. Among the N sources of paddy fields, atmospheric deposition and irrigation inputs remain poorly understood. In particular, insufficient information is available for atmosphere-rice paddy exchange of gaseous and particulate reactive N (Nr, all N species other than molecular N) which represents the net input or output through dry deposition and emission. In this study, we assessed the N inputs via atmospheric deposition and irrigation to a Japanese rice paddy area by weekly monitoring for 2 years with special emphasis on gas and particle exchange. The rice paddy during the cropping season acted as a net emitter of ammonia ($NH_3$) to the atmosphere regardless of the N fertilizer applications, which reduced the effects of dry deposition to the N input. Dry N deposition was quantitatively similar to wet N deposition, when subtracting the rice paddy $NH_3$ emissions from N exchange. The annual N inputs to the rice paddy were 3.2 to $3.6\;kg\;N\;ha^{-1}\;yr^{-1}$ for exchange, 8.1 to $9.8\;kg\;N\;ha^{-1}\;yr^{-1}$ for wet deposition, and 11.1 to $14.5\;kg\;N\;ha^{-1}\;yr^{-1}$ for irrigation. The total N input, 22.8 to $27.5\;kg\;N\;ha^{-1}\;yr^{-1}$, corresponded to 38% to 55% of the N fertilizer application rate and 53% to 67% of the brown rice N uptake. Monitoring of atmospheric deposition and irrigation as N sources for rice paddies will therefore be necessary for adequate N management.

Numerical Simulation of Extreme Air Pollution by Fine Particulate Matter in China in Winter 2013

  • Shimadera, Hikari;Hayami, Hiroshi;Ohara, Toshimasa;Morino, Yu;Takami, Akinori;Irei, Satoshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.25-34
    • /
    • 2014
  • In winter 2013, extreme air pollution by fine particulate matter ($PM_{2.5}$) in China attracted much public attention. In order to simulate the $PM_{2.5}$ pollution, the Community Multiscale Air Quality model driven by the Weather Research and Forecasting model was applied to East Asia in a period from 1 January 2013 to 5 February 2013. The model generally reproduced $PM_{2.5}$ concentration in China with emission data in the year 2006. Therefore, the extreme $PM_{2.5}$ pollution seems to be mainly attributed to meteorological (weak wind and stable) conditions rather than emission increases in the past several years. The model well simulated temporal and spatial variations in $PM_{2.5}$ concentrations in Japan as well as China, indicating that the model well captured characteristics of the $PM_{2.5}$ pollutions in both areas on the windward and leeward sides in East Asia in the study period. In addition, contribution rates of four anthropogenic emission sectors (power generation, industrial, residential and transportation) in China to $PM_{2.5}$ concentration were estimated by conducting zero-out emission sensitivity runs. Among the four sectors, the residential sector had the highest contribution to $PM_{2.5}$ concentration. Therefore, the extreme $PM_{2.5}$ pollution may be also attributed to large emissions from combustion for heating in cold regions in China.

A Study on Prediction of Flow Characteristics and Performance of a Heavy-Duty Diesel Engine with Continuously Regenerating Method PM Reduction (대형디젤기관에서 연속재생방식 PM저감장치장착에 따른 유동 및 성능에 관한 수치해석적 연구)

  • Han, Young-Chool;Moon, Byung-Chul;Oh, Sang-Ki;Baik, Doo-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.52-57
    • /
    • 2005
  • The increasing automobiles continue to cause air-pollution problem s worse than ever. In fact, many automobile research are involved in how to reduce exhaust emissions effectively specially in $NO_X$ and PM to comply with stringent emission standards, Euro V. This research emphasized on the development of continuous regeneration DPF technology which was one of promising removing technology of particulate matters because of its comparability and high applicability. In addition, this research discussed on some design points of view through correlation study by com paring the experimental data with computational results by the introduction of commercial codes such as CFD-ACE+ and KIVA-3V. The numerical simulation on the performance of continuous regeneration DPF apparatus and corresponding emission characteristics has been predicted well enough and verified with experimental results. The pressure and average temperatures are decreased to about 2.6% and 1.4% respectively under a full engine load condition mainly due to back pressures raised by diesel particulate filter. Pressure, temperature and heat releasing rates tend to decrease specially at higher engine load, but they are not affected at lower engine load regions.

Experimental Study on Exhaust Gas Pressure Response Exhaust System with DPF (DPF를 적용한 배압 감응형 배기시스템에 대한 실험적 연구)

  • Ki, Si-Woo;Youm, Kwang-Wook;Lee, Jung-Ho;Ham, Seong-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.80-86
    • /
    • 2017
  • In this paper, it is proposed to solve the problem of the harmful exhaust gas reduction device DPF. The exhaust gas is effectively guided through the control of the exhaust gas flow path which is separated in both directions. Through cross control of two DPF units, it helps to improve the purification and regeneration combustion characteristics of harmful emissions. It is possible to prevent an increase in internal pressure caused by deposition of particulate matter in the DPF. It is also an object of the present invention to provide an automobile harmful exhaust gas reduction device capable of solving the problem of lowering the output and lowering the fuel consumption.

Emission Characteristics of Air Pollutants and Black Carbon from Wood-pellet Stove and Boiler (목재 펠릿 난로와 보일러 사용에 의한 대기오염물질과 블랙카본의 배출 특성)

  • Park, Sung Kyu;Lyu, Kun Jung;Kim, Daekeun;Kim, Dong Young;Jang, Young Kee;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2015
  • This study was carried out simulating domestic utilization conditions of a wood pellet stove and a wood pellet boiler in order to determine emission factors (EFs) of macro-pollutants, i.e., carbon monoxide, nitrogen oxides, sulfur oxides, ammonia, particulate matters (total suspended particulate, $PM_{10}$, $PM_{2.5}$, black carbon) and trace pollutants (i.e., ten different volatile organic compounds). The composite pollutants EFs for the pellet stove were: for TSP 4.58 g/kg, for $PM_{10}$ 3.35 g/kg, for $PM_{2.5}$ 2.48 g/kg, CO 119.23 g/kg, NO 14.40 g/kg, $SO_2$ 0.17 g/kg, TVOC 37.73 g/kg, $NH_3$ 0.02 g/kg and emissions were similar to the pellet boiler appliance: for TSP 4.73 g/kg, for $PM_{10}$ 3.41 g/kg, for $PM_{2.5}$ 2.63 g/kg, CO 161.51 g/kg, NO 13.67 g/kg, $SO_2$ 0.19 g/kg, TVOC 45.22 g/kg, $NH_3$ 0.02 g/kg.

Emission Characteristics of Air Pollutants and Black Carbon from Wood Stove and Boiler (화목 난로와 보일러 사용에 의한 대기오염물질과 블랙카본의 배출 특성)

  • Park, Sung Kyu;Choi, Sang Jin;Kim, Dae keun;Kim, Dong Young;Jang, Young Kee;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.6 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • Manually fed firewood burning appliances, i.e., stove and boiler, were tested in order to determine emission factors (EFs) of macro-pollutants, i.e., carbon monoxide, nitrogen oxides, sulfur oxides, ammonia, particulate matters (total suspended particulate, $PM_{10}$, $PM_{2.5}$, black carbon) and trace pollutants (i.e., ten different volatile organic compounds). The composite pollutants EFs for the wood stove were: for TSP 15.45 g/kg, for $PM_{10}$ 6.53 g/kg, $PM_{2.5}$ 4.16 g/kg, CO 175.49 g/kg, NO 1.58 g/kg, $SO_2$ 0.15 g/kg, TVOC 48.02 g/kg, $NH_3$ 0.02 g/kg and emissions were similar to the wood boiler appliance: for TSP 12.23 g/kg, for $PM_{10}$ 5.84 g/kg, $PM_{2.5}$ 3.66 g/kg, CO 146.74 g/kg, NO 1.42 g/kg, $SO_2$ 0.15 g/kg, TVOC 47.78 g/kg, $NH_3$ 0.01 g/kg.

Size Distributions of Particulate Matter Emitted during 3D Printing and Estimates of Inhalation Exposure (3D 프린팅 가동 조건 별 발생 입자크기 분포와 흡입 노출량 추정)

  • Park, Jihoon;Jeon, Haejoon;Park, Kyungho;Yoon, Chungsik
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.524-538
    • /
    • 2018
  • Objective: This study aimed to identify the size distributions of particulate matter emitted during 3D printing according to operational conditions and estimate particle inhalation exposure doses at each respiratory region. Methods: Four types of printing filaments were selected: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), Laywood, and nylon. A fused deposition modeling (FDM) 3D printer was used for printing. Airborne particles between 10 nm and $10{\mu}m$ were measured before, during, and after printing using real-time monitors under extruder temperatures from 215 to $290^{\circ}C$. Inhalation exposures, including inhaled and deposited doses at the respiratory regions, were estimated using a mathematical model. Results: Nanoparticles dominated among the particles emitted during printing, and more particles were emitted with higher temperatures for all materials. Under all temperature conditions, the Laywood emitted the highest particle concentration, followed by ABS, PLA, and nylon. The particle concentration peaked for the initial 10 to 20 minutes after starting operations and gradually decreased with elapsed time. Nanoparticles accounted for a large proportion of the total inhaled particles in terms of number, and about a half of the inhaled nanoparticles were estimated to be deposited in the alveolar region. In the case of the mass of inhaled and deposited dose, particles between 0.1 and $1.0{\mu}m$ made up a large proportion. Conclusion: The number of consumers using 3D printers is expected to expand, but hazardous emissions such as thermal byproducts from 3D printing are still unclear. Further studies should be conducted and appropriate control strategies considered in order to minimize human exposure.

Evaluation of NH3 emissions in accordance with the pH of biochar

  • Yun-Gu, Kang;Jae-Han, Lee;Jin-Hyuk, Chun;Yeo-Uk, Yun;Taek-Keun, Oh;Jwa-Kyung, Sung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.787-796
    • /
    • 2021
  • Nitrogen (N) is the most important element during the process of plant growth, and the quality of crops varies depending on the amount of nitrogen present. Most of the nitrogen is used for plant growth, but approximately 10 - 20% of Nitrogen is carried away by the wind in the form of NH3. This volatilized NH3 reacts with various oxides in the atmosphere to generate secondary particulate matter. To address this, the present study attempts to reduce NH3 occurring in the soil using biochar at a specific pH. Biochar was used as a treatment with 1% (w·w-1) of the soil, and urea was applied at different levels of 160, 320, and 640 kg·N·ha-1. NH3 generated in the soil was collected using a dynamic column and analyzed using the indophenol blue method. NH3 showed the maximum emission within 4 - 7 days after the fertilizer treatment, decreasing sharply afterward. NH3 emission levels were reduced with the biochar treatment in all cases. Among them, the best reduction efficiency was found to be approximately 25% for the 320 kg·ha-1 + pH 6.7 biochar treatment. Consequently, in order to reduce the amount of NH3 generated in the soil, it is most effective to use pH 6.7 biochar and a standard amount (320 kg·N·ha-1) of urea.

Chemical Characteristics of PM1 using Aerosol Mass Spectrometer at Baengnyeong Island and Seoul Metropolitan Area (백령도 및 서울 대기오염집중측정소 에어로졸 질량 분석기 자료를 이용한 대기 중 에어로졸 화학적 특성 연구)

  • Park, Taehyun;Ban, Jihee;Kang, Seokwon;Ghim, Young Sung;Shin, Hye-Jung;Park, Jong Sung;Park, Seung Myung;Moon, Kwang Joo;Lim, Yong-Jae;Lee, Min-Do;Lee, Sang-Bo;Kim, Jeongsoo;Kim, Soon Tae;Bae, Chang Han;Lee, Yonghwan;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.430-446
    • /
    • 2018
  • To improve understanding of the sources and chemical properties of particulate pollutants on the Korean Peninsula, An Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine particle ($NR-PM_1$) from 2013 to 2015 at Baengnyeong Island and Seoul metropolitan area (SMA), Korea. The chemical composition of $NR-PM_1$ in Baengnyeong island was dominated by organics and sulfate in the range of 36~38% for 3 years, and the organics were the dominant species in the range of 44~55% of $NR-PM_1$ in Seoul metropolitan area. The sulfate was found to be more than 85% of the anthropogenic origin in the both areas of Baengnyeong and SMA. Ratio of gas to particle partition of sulfate and nitrate were observed in both areas as more than 0.6 and 0.8, respectively, representing potential for formation of additional particulate sulfate and nitrate. The high-resolution spectra of organic aerosol (OA) were separated by three factors which were Primary OA(POA), Semi-Volatility Oxygenated Organic Aerosol (SV-OOA), and Low-Volatility OOA(LV-OOA) using positive matrix factorization (PMF) analysis. The fraction of oxygenated OA (SOA, ${\fallingdotseq}OOA$=SV-OOA+LV-OOA) was bigger than the fraction of POA in $NR-PM_1$. The POA fraction of OA in Seoul is higher than it of Baengnyeong Island, because Seoul has a relatively large number of primary pollutants, such as gasoline or diesel vehicle, factories, energy facilities. Potential source contribution function (PSCF) analysis revealed that transport from eastern China, an industrial area with high emissions, was associated with high particulate sulfate and organic concentrations at the Baengnyeong and SMA sites. PSCF also presents that the ship emissions on the Yellow Sea was associated with high particulate sulfate concentrations at the measurement sites.

A Study on Estimation of Air Pollutants Emission from Residential Wood Stove (주거용 화목난로의 대기오염 배출량 추정에 관한 연구)

  • Kim, Pil-Su;Jang, Young-Kee;Kim, Jeong;Shin, Yong-Il;Kim, Jeong-Soo;An, Jun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.276-285
    • /
    • 2010
  • Recently the Korean government has tried to cut down the $PM_{10}$ concentration by the Special Law for Air Quality Improvement. But the concentrations of $PM_{10}$ have exceeded the air quality standard at most monitoring stations. Primary $PM_{10}$ emitted from various sources and emission data have large uncertainty. The biomass burning is one of the major sources of $PM_{10}$ emission. The biomass burning is composed of wood stove usage, meat cooking and agricultural combustion etc.. Activity data and emission factors for the biomass burning are limited, and it is hard to calculate the air pollution emissions from these sources. In this study, we tried to estimate the air pollution emission from residential wood stove usage. The number of total wood stoves is estimated by the survey of wood stove manufacturer. And air pollution emission factors for the wood stove are investigated using the flue gas measurement by U.S. EPA particulate test method (Method 5G). As the results, the $PM_{10}$ and CO emission factors of wood stove are estimated as 7.7 g/kg-wood and 78.8 g/kg-wood respectively. The annual $PM_{10}$ and CO emissions from wood stove are calculated as 1,200~3,600 ton/year and 12,600~36,400 ton/year in Korea. It is confirmed that wood stove is the one of major sources of biomass burning, and the survey for activity data and the measurement for emission factors are needed for reducing the uncertainty of these emission data.