• Title/Summary/Keyword: Particle-free

검색결과 608건 처리시간 0.022초

자유표면내 물의 와류효과를 위한 적응적 공기 입자 기법 (Adaptive Air-Particle Method for Vortex Effects of Water in Free Surface)

  • 김종현;이정
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권1호
    • /
    • pp.17-24
    • /
    • 2017
  • 미시적인 관점에서 물표면 주위에 위치한 물 입자와 공기 입자는 끊임없이 서로 상호작용을 한다. 이러한 상호작용은 대량의 작은 물 입자들이 엷게 흩날리는 상황이 표현되는 폭포나 바다에서 명확하게 나타난다. 즉, 엷게 퍼진 작은 물 입자들로 인해 물과 공기사이의 표면경계가 불분명해지며 이 부분에서 공기와 물 입자간의 상호작용으로 인해 급격한 와류현상이 나타나게 된다. 그러나 기존 입자 기반 물 시뮬레이션에서는 유동에 의해 나타나는 자기와류 (self-trubulent)에만 집중하였고, 자유표면 근처에서 공기에 의해 표현되는 부차적인 와류 현상에 대해서는 고려하지 못했다. 유체표면의 움직임에 집중된 모델링으로 인해 대량의 작은 물 입자들이 엷게 흩날리는 장면을 사실적으로 연출하기에는 한계가 있다. 우리는 1) 물 표면에서 공기의 역할을 담당하는 공기 입자 층을 적응적으로 생성하고, 2) 물과 공기를 서로 다른 상 (phase)으로 모델링하여 자유표면 근처에서 발생하는 와류를 사실적으로 표현하는 기법을 제안한다. 결과적으로, 우리는 공기에 의해 표현되는 와류를 입자기반 프레임워크에서 효율적으로 다루어 계산속도 및 결과측면에서 기존기법보다 개선된 결과를 얻었다.

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

PATCHWISE REPRODUCING POLYNOMIAL PARTICLE METHOD FOR THICK PLATES: BENDING, FREE VIBRATION, AND BUCKLING

  • Kim, Hyunju;Jang, Bongsoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권2호
    • /
    • pp.67-85
    • /
    • 2013
  • Reproducing Polynomial Particle Method (RPPM) is one of meshless methods that use meshes minimally or do not use meshes at all. In this paper, the RPPM is employed for free vibration analysis of shear-deformable plates of the first order shear deformation model (FSDT), called Reissner-Mindlin plate. For numerical implementation, we use flat-top partition of unity functions, introduced by Oh et al, and patchwise RPPM in which approximation functions have high order polynomial reproducing property and the Kronecker delta property. Also, we demonstrate that our method is highly effective than other existing results for various aspect ratios and boundary conditions.

SPH 기법을 이용한 주조공정 용탕 주입 유동 해석 (Molten Metal Flow Analysis of Casting Process Using SPH Method)

  • 박병래;이상욱
    • 한국가시화정보학회지
    • /
    • 제16권1호
    • /
    • pp.54-60
    • /
    • 2018
  • It is important to develop more efficient and productive casting processes for an automated high precision molten-metal casting system. Detailed analysis of molten-metal flow in the casting process by the numerical approach will help to optimize the control of a ladle. In this study, the smoothed particle hydrodynamics method was applied to analyze casting flow characteristics with different tilting angular speed and initial molten-metal level. The smoothed particle hydrodynamics technique has advantages to easily handle non-linear free surface behavior with the absence of a computational mesh. We found that tilting angular speed has relatively greater effect on the casting flowrate and that the effect of the initial molten-metal level is only minor. Further extensive study will be necessary to find an optimal condition for high efficient casting system.

Comparison of Deposition Behavior and Properties of Cyanide-free Electroless Au Plating on Various Underlayer Electroless Ni-P films

  • Kim, Dong-Huyn
    • 한국표면공학회지
    • /
    • 제55권4호
    • /
    • pp.202-214
    • /
    • 2022
  • Internal connections between device, package and external terminals for connecting packaging and printed circuit board are normally manufactured by electroless Ni-P plating followed by immersion Au plating (ENIG process) to ensure the connection reliability. In this study, a new non-cyanide-based immersion and electroless Au plating solutions using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated on different underlayer electroless Ni-P plating layers. As a result, it was confirmed that the deposition behavior and film properties of electroless Au plating are affected by grain size and impurity of the electroless Ni-P film, which is used as the plating underlayer. Au plating on the electroless Ni-P plating film with a dense surface structure showed the highest bonding strength. In addition, the electroless Au plating film on the Ni-P plating film has a smaller particle size exhibited higher bonding strength than that on the large particle size.

Experimental Studies on the Motion and Discharge Behavior of Free Conducting Wire Particle in DC GIL

  • Wang, Jian;Wang, Zhiyuan;Ni, Xiaoru;Liu, Sihua
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.858-864
    • /
    • 2017
  • This study aims to restrain free conducting wire-type particles which are commonly and dangerously existing within DC gas-insulated transmission lines. A realistic platform of a coaxial cylindrical electrode was established by using a high-speed camera and a partial discharge (PD) monitor to observe the motion, PD, and breakdown of these particles. The probabilities of standing or bouncing, which can be affected by the length of the particles, were also quantitatively examined. The corona images of the particles were recorded, and particle-triggered PD signals were monitored and extracted. Breakdown images were also obtained. The air-gap breakdown with the particles was subjected to mechanism analysis on the basis of stream theory. Results reveal that the lifting voltage of the wire particles is almost irrelevant to their length but is proportional to the square root of their radius. Short particles correspond to high bouncing probability. The intensity and frequency of PD and the micro-discharge gap increase as the length of the particles increases. The breakdown voltage decreases as the length of the particles decreases.

$SF_6$ 가스 동축원통전극 내의 금속이물이 절연파괴에 미치는 영향 (The Effect on Breakdown of the Conducting Particles Between Coaxial Cylindrical Electrodes in $SF_6$ Gas)

  • 조국희;권동진;이강수;곽희로
    • 조명전기설비학회논문지
    • /
    • 제12권2호
    • /
    • pp.85-90
    • /
    • 1998
  • 본 논문에서는 AC 전압 하에서 자유 도전성 금속이물 혼입에 의한 SF6 가스로 압축된 GIS의 절연특성에 관하여 연구하였다. GIS 내에서 자유 도전성 금속이물이 혼입되면 절연파괴 전압을 낮추는 결정적인 역할을 할 수 있으므로, 금속이물의 재질과 크기에 따른 부상전계 및 절연파괴전압을 측정하였다. 구리, 철, 알루미늄의 선형 금속이물에서의 부상전계 계산값과 측정값을 비교, 분석하였다. 압축된 $SF_6$ 가스로 절연된 동축원통전극간에 금속이물의 혼입될 경우의 절연파괴전압은 금속이물의 없을 때보다 낮게 나타났으며, 금속이물의 재질과 크기에 상당히 의존하였다. 따라서 자유도전성 금속이물은 GIS의 절연파괴 특성에 매우 중요한 요소로 작용함을 알 수 있었다.

  • PDF

GIS가스 챔버 내에서 파티클 부상특성 (The Bouncing Characteristics of Particles in GIS Chamber)

  • 이강수;곽희로;조용우;김경화;조국희;권동진;전상준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 E
    • /
    • pp.1850-1852
    • /
    • 1997
  • In this paper, the behavior and effect of conducting particles in a $SF_6$ insulated electrode system, are presented. It is shown that the bouncing voltage of the particle is independent of particle length, and that the breakdown voltages are affected by the particle length. The longer the particle, the lower the breakdown voltages. The bouncing-off, the lift off and breakdown voltages increase as the particle diameter increase. The breakdown voltage of free particle is lower than fixed particle on the enclosure.

  • PDF

Towed underwater PIV measurement for free-surface effects on turbulent wake of a surface-piercing body

  • Seol, Dong Myung;Seo, Jeong Hwa;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.404-413
    • /
    • 2013
  • In the present study, a towed underwater particle image velocimetry (PIV) system was validated in uniform flow and used to investigate the free-surface effects on the turbulent wake of a simple surface-piercing body. The selected test model was a cylindrical geometry formed by extruding the Wigley hull's waterplane shape in the vertical direction. Due to the constraints of the two-dimensional (2D) PIV system used for the present study, the velocity field measurements were done separately for the vertical and horizontal planes. Using the measured data at several different locations, it was possible to identify the free-surface effects on the turbulent wake in terms of the mean velocity components and turbulence quantities. In order to provide an accuracy level of the data, uncertainty assessment was done following the International Towing Tank Conference standard procedure.

유체 충격 하중 예측을 위한 MPS법의 개량 (IMPROVEMENT OF MPS METHOD IN SIMULATING VIOLENT FREE-SURFACE MOTION AND PREDICTING IMPACT-LOADS)

  • 황성철;이병혁;박종천
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.71-80
    • /
    • 2010
  • The violent free-surface motions and the corresponding impact loads are numerically simulated by using the Moving Particle Semi-implicit (MPS) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flows. In the original MPS method, there were several shortcoming including non-optimal source term, gradient and collision models, and search of free-surface particles, which led to less-accurate fluid motions and non-physical pressure fluctuations. In the present study, how those defects can be remedied is illustrated by step-by-step improvements in respective processes of the revised MPS method. The improvement of each step is explained and numerically demonstrated. The numerical results are also compared with the experimental results of Martin and Moyce (1952) for dam-breaking problem. The current numerical results for violent free-surface motions and impact pressures are in good agreement with their experimental data.