Browse > Article
http://dx.doi.org/10.12941/jksiam.2013.17.067

PATCHWISE REPRODUCING POLYNOMIAL PARTICLE METHOD FOR THICK PLATES: BENDING, FREE VIBRATION, AND BUCKLING  

Kim, Hyunju (Department of Mathematics and Statistics, University of North Carolina at Charlotte)
Jang, Bongsoo (School of Technology Management, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.17, no.2, 2013 , pp. 67-85 More about this Journal
Abstract
Reproducing Polynomial Particle Method (RPPM) is one of meshless methods that use meshes minimally or do not use meshes at all. In this paper, the RPPM is employed for free vibration analysis of shear-deformable plates of the first order shear deformation model (FSDT), called Reissner-Mindlin plate. For numerical implementation, we use flat-top partition of unity functions, introduced by Oh et al, and patchwise RPPM in which approximation functions have high order polynomial reproducing property and the Kronecker delta property. Also, we demonstrate that our method is highly effective than other existing results for various aspect ratios and boundary conditions.
Keywords
Meshfree methods; partition of unity function with flat-top; reproducing polynomial particle shape functions; Reissner-Mindlin plate theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Zeng and C.W. Bert, A differential quadrature analysis of vibration for rectangular stiffened plates, Journal of Sound and Vibration, 241(2), (2001), 247-252.   DOI   ScienceOn
2 W.K. Liu, S. Jun Liu, S. Li, J. Adee, and T. Belytschko, Reproducing Kernel Particle Methods for Structural Dynamics, International Journal for Numerical Methods in Engineering, 38, (1995), 1655-1679.   DOI   ScienceOn
3 V.V. Meleshko, Bending of an Elastic rectangular clamped plate: Exact versus Engineering solutions, Journal of Elasticity, 48, (1997), 1-50.   DOI
4 A.K. Noor, Free vibrations of multilayered composite plates, American Institute of Aeronautics and Astronautics Journal, 11(7), (1973), 1038-1039.   DOI   ScienceOn
5 B. Szabo and I. Babuska, Finite element analysis, John Wiley, 1991.
6 H.-S. Oh and J. W. Jeong, reproducing Polynomial (Singularity) Particle Methods and Adaptive Meshless Methods for Two-Dimensional Elliptic Boundary Value Problems, Comput. Methods Appl. Mech. Engrg., 198, (2009), 933-946.   DOI   ScienceOn
7 H.-S. Oh and J.W. Jeong, Almost Everywhere Partition of Unity to deal with Essential boundary Conditions in Meshless Methods, Compt. Meth. Appl. Mech. Eng., 198, (2009), 3299-3312.   DOI   ScienceOn
8 H.-S. Oh, J.W. Jeong, and W.T. Hong, The generalized product partition of unity for the meshless methods, Journal of Comp. Phy., 229, (2010), 1600-1620.   DOI   ScienceOn
9 H.-S. Oh, J.W. Jeong and J. G. Kim, The Reproducing Singularity Particle Shape function for problems containing singularities, Comput Mech, 41, (2007), 135-157.   DOI
10 H.-S. Oh, J. G. Kim, and W.T. Hong, The Piecewise Polynomial Partition of Unity Shape Functions for the Generalized Finite Element Methods, Comput. Methods Appl. Mech. Engrg., 197, (2008), 3702-3711.   DOI   ScienceOn
11 H.-S. Oh, J.G. Kim, and J.W. Jeong, The Closed Form Reproducing Polynomial Particle Shape Functions for Meshfree Particle Methods, Comput. Methods Appl. Mech. Engrg., 196, (2007), 3435-3461.   DOI   ScienceOn
12 H.-S. Oh, J.G. Kim, and J.W. Jeong, The smooth piecewise polynomial particle shape functions corresponding to patchwise non-uniformly spaced particles for meshfree particles methods, Computational Mechanics, 40, (2007), 569-594.   DOI
13 J.N. Reddy, A review of refined theories of laminated composite plates, The Shock and Vibration Digest, 22(7), (1990), 3-17.
14 J.N. Reddy, Theory and Analysis of Elastic Plates, Second Edition, CRC Press, 2006.
15 J.N. Reddy and A.A. Khdeir, Buckling and vibration of laminated composite plates using various plate theories, American Institute of Aeronautics and Astronautics Journal, 27(12), (1989), 1808-1817.   DOI
16 T. Stroubolis, K. Copps, and I. Babuska, Generalized Finite Element method, Comput. Methods Appl. Mech. Engrg., 190, (2001), 4081-4193.   DOI   ScienceOn
17 Duarte C.A. and J.T. Oden, An hp adaptive method using clouds, Computer methods in App. Mech. Engrg, 139, (1996), 237-262.   DOI   ScienceOn
18 T. Stroubolis, L. Zhang, and I. Babuska, Generalized Finite Element method using mesh-based handbooks: application to problems in domains with many voids, Comput. Methods Appl. Mech. Engrg., 192,, (2003), 3109-3161.   DOI   ScienceOn
19 A. Tessler, E. Saether, and T. Tsui, Vibration of thick laminated composite plates, Journal of Sound and Vibration, 179(3), (1995), 475-498.   DOI   ScienceOn
20 D.J. Dawe and S. Wang, Spline finite strip analysis of the buckling and vibration of rectangular composite laminated plates, International Journal of Mechanical Sciences, 37(6), (1995), 589-606.
21 A.J.M. Ferreira, MatLab Codes for Finite Element Analysis (Solids and Structures), Springer, 2009.
22 M. Griebel and M.A. Schweitzer, Meshfree Methods for partial Differential Equations I, Lect. Notes in Compu. Science and Engr., Springer, 57, 2003.
23 M. Griebel and M.A. Schweitzer, Meshfree Methods for partial Differential Equations II, Lect. Notes in Compu. Science and Engr., Springer, 43, 2005.
24 M. Griebel and M.A. Schweitzer, Meshfree Methods for partial Differential Equations III, Lect. Notes in Compu. Science and Engr., Springer, 26, 2007.
25 W. Han and X. Meng, Error analysis of reproducing kernel particle method, Comput. Meth. Appl. Mech. Engrg., 190, (2001), 6157-6181.   DOI   ScienceOn
26 E. Hinton, Numerical methods and software for dynamic analysis of plates and shells, Pineridge Press, Swansea, U.K., 1988.
27 S. Kitipornchai, Y. Xiang, C.M.Wang, and K.M. Liew, Buckling of thick skew plates, International Journal for Numerical Methods in Engineering, 36, (1993), 1299-1310.   DOI   ScienceOn
28 S. Li, Lu, H.,W. Han.,W.K. Liu, and D.C. Simkins Jr., Reproducing Kernel Element Method: Part II. Globally Conforming $I^m$/$C^n$ hierarchies, Computer Methods in App. Mech. and Engrg, 193, (2004), 953-987.   DOI   ScienceOn
29 K.M. Liew, C.M. Wang, Y. Xiang, and S. Kitipornchai, Vibration of Mindlin Plates, Elsevier, Amsterdam, 1998.
30 S. Li and W.K. Liu, Meshfree Particle Methods, Springer-Verlag, 2004.
31 K.M. Liew, J. Wang, T.Y. Ng, and M.J. Tan, Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method, J. of Sound & Vibration, 276, (2004), 997-1017.   DOI   ScienceOn
32 K.M. Liew, Y. Xiang, and S. Kitipornchai, Research on thick plate vibration: a literature survey, Journal of Sound and Vibration, 180(1), (1995), 163-176.   DOI   ScienceOn
33 G.R. Liu and X.L. Chen, A mesh-free method for static and free vibration analysises of thin plates of complicated shape, J. Sound and Vibration, 241(5), (2001), 839-853.   DOI   ScienceOn
34 W.K. Liu, W. Han, H. Lu, Li, S., and J. Cao, Reproducing Kernel Element Method: Part I. Theoretical formulation, Computer Methods in App. Mech. and Engrg, 193, (2004), 933-951.   DOI   ScienceOn
35 W.K. Liu, S. Jun, and Y.F. Zhang, Reproducing Kernel Particle Methods, International Journal for Numerical Methods in Fluids, 20, (1995), 1081-1106.   DOI   ScienceOn
36 W.K. Liu, S. Li, and T. Belytschko, Moving Least Square Reproducing Kernel Method Part I: Methodology and Convergence, Computer Methods in Applied Mechanics and Engineering, 143, (1997), 422-453.
37 S. Atluri and S. Shen, The Meshless Method, Tech Science Press, 2002.
38 I. Babuska, U. Banerjee, and J.E. Osborn, Survey of meshless and generalized finite element methods: A unified approach, Acta Numerica, Cambridge Press, 2003, 1-125.
39 T. Belytschko, D. Organ, and Y. Krongauz, A coupled finite element-element-free Galerkin method, Comput. Mech., 173(3), (1995), 186-195.
40 I. Babuska, U. Banerjee, and J.E. Osborn, On the approximability and the selection of particle shape functions, Numer. math, 96, (2004), 601-640.   DOI
41 C.W. Bert and M. Malik, The differential quadrature method for irregular domains and application to plate vibration, International Journal of Mechanical Sciences, 38(6), (1996), 589-606.   DOI   ScienceOn
42 S. Brenner and R. Scott, The mathematical theory of finite element methods, Springer, 1994.
43 P.G. Ciarlet, Basic error estimates for elliptic problems, Handbook of Numerical Analysis Vol. II, North- Holland, 1991.
44 D.J. Dawe and O.L. Roufaeil, Rayleigh-Ritz vibration analysis of Mindlin plates, Journal of Sound and Vibration, 45(1), (1980), 113-120.
45 D.J. Dawe and O.L. Roufaeil, Rayleigh-Ritz vibration analysis of Mindlin plates, J. of Sound & Vibration, 69(3), (1980), 345-359.   DOI   ScienceOn