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ABSTRACT. Reproducing Polynomial Particle Method (RPPM) is one of meshless methods
that use meshes minimally or do not use meshes at all. In this paper, the RPPM is employed
for free vibration analysis of shear-deformable plates of the first order shear deformation model
(FSDT), called Reissner-Mindlin plate. For numerical implementation, we use flat-top parti-
tion of unity functions, introduced by Oh et al, and patchwise RPPM in which approximation
functions have high order polynomial reproducing property and the Kronecker delta property.
Also, we demonstrate that our method is highly effective than other existing results for various
aspect ratios and boundary conditions.

1. INTRODUCTION

The classical plate theories (CPT) based on the Kirchhoff hypothesis, are often used for thin
plates. But these classical theories are inadequate to predict the gross response characteristics
of moderately thick laminated composite plates as well as plates with high anisotropy. Usually
in thicker plates, the vibration solutions are unconservatively high. The inaccuracy is caused by
ignoring the transverse shear and normal strains in the plates. Thus, many shear deformation
plate theories were developed to improve the analysis of the vibration of plates, and this had
led to more accurate results. The first order shear deformation plate theory (FSDT) extends
the kinematics of the CPT, in which transverse normal and shear stresses are neglected by
relaxing the normality restriction and allowing for arbitrary but constant rotation of transverse
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normals. Numerous papers and books have been published on the vibration analysis of plates
using various plate theories [23, 30, 39, 44].

The buckling analysis of plates is another class of eigenvalue problem. As is well known, a
plate may lose its ability to withstand the external loadings, when the in-plane strain reaches a
critical level. This phenomenon is the buckling of the plate, and the corresponding critical load
at which the plate starts to become unstable, is termed the buckling load.

To analyze the buckling behavior of a thin plate, the CPT is often used. However, simi-
lar to the vibration of plates, when the thickness of the plate increases, the transverse shear-
deformation effects will significantly influence the results of the buckling analysis. Thus the
CPT is not applicable, and FSDTs [40, 19] are often resorted to analyze the buckling behavior
instead of the CPT. Furthermore, the use of CPT may result in a different buckling mode shape
compared with those of other plate theories, such as 3D elasticity theory, FSDT or higher order
shear-deformation theory (HSDT).

Many methodologies have been implemented for various plate buckling and free vibration
problems. These methods include analytical and numerical techniques, such as the Ritz method
[8, 18], differential quadrature method [5, 45], finite strip methods [10], the finite element
method [17, 41], and meshfree methods [22, 24] etc.

Meshless methods [1, 2, 3, 4, 20, 24, 42, 43] have several advantages over the conventional
finite element method [6, 7, 31]. Their flexibility and wide applicability have gained attention
from scientists and engineers to dynamic research areas [13, 14, 15]. Meshless methods employ
flexible smooth base functions and use no mesh or use minimal background meshes. Actually,
meshless methods have been referred to as meshfree methods [1, 2, 3], Reproducing Kernel
Particle Methods(RKPM) [16, 20, 26, 27, 28], Reproducing Kernel Element Methods (RKEM)
[20, 21, 25], Generalized Finite Element Methods (GFEM) (Partition or Unity Finite Element
Methods (PUFEM)) [29, 42, 43], h−p Cloud Method [11] and Element Free Galerkin Method
(EFGM) [1].

Although these approaches are applicable in solving many difficult science and engineering
problems, they have some difficulties: (1) The popular partitions of unity, an essential ingredi-
ent of GFEM, is complicated (such as Shepard type PU functions) or leads to singular stiffness
matrix (when linear finite element bases functions are used as PU functions); (2) These popular
PU functions have limited regularities; (3) When enriched local approximation functions are
introduced, the integrations for these functions require much longer computing times; (4) These
popular PU functions do not satisfy the Kronecker delta property except for hat functions. They
have difficulties in implementing non-homogeneous essential boundary conditions.

To overcome these difficulties, encountered in meshless methods, Oh et al introduced three
closed- form partition of unity (PU) functions that have flat-top: (1) Convolution partition of
unity [36] for any partition of a given domain; Using convolution partition of unity, Oh et
al. introduced several meshless methods that are called patchwise RPPM, adaptive RPPM,
and RSPM (Reproducing Singularity Particle Method) in [32, 35, 36, 38]. Note that RPPM
is similar to RKPM [2, 16, 20, 21, 25, 26, 27, 28]. (2) Almost everywhere partition of unity
[33] that satisfies partition of unity property except at corner points. (3) Generalized product
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partition of unity [34]. Using PU functions with flat-top gives relatively small matrix condition
numbers.

In this paper, we apply PU function with flat-top to construct smooth local approximation
functions that have the reproducing polynomial property and the Kronecker delta property.

In section 2, we introduce definitions and terminologies that are used in this paper, and
briefly review the partition of unity functions with flat-top. In section 3, the variational for-
mulation of Reissner-Mindlin plate for free vibration and buckling is described. In section
4, effectiveness of the reproducing polynomial particle method (RPPM) is demonstrated with
various aspect ratio of plates. Finally, the concluding remarks are given in section 5.

2. CLOSED-FORM PARTITION OF UNITY WITH FLAT-TOP

Let Ω̄ is the closure of Ω ⊂ Rd. We define the vector space C(Ω̄) to consist of all those func-
tions ϕ ∈ Cm(Ω) for which Dαϕ(= ∂α1∂α2 · · · ∂αdϕ) is bounded and uniformly continuous
on Ω for |α| = α1 + · · ·+αd ≤ m. In the following, a function ϕ ∈ Cm(Ω) is said to be a Cm-
function. If Ψ is a function defined on Ω, we define the support of Ψ as

suppΨ = {x ∈ Ω|Ψ(x) 6= 0}.

A family {Uk : k ∈ D} of open subsets of Rd is said to be a point finite open covering of
Ω ⊆ Rd if there is an integer M such that any x ∈ Ω lies in at most M of the open sets Uk and
Ω ⊆

⋃
k Uk.

For a point finite open covering {Uk : k ∈ D} of a domain Ω, suppose there is a family
{ϕk : k ∈ D} of Lipschitz functions on Ω satisfying the following conditions:

(1) For k ∈ D, 0 ≤ ϕk(x) ≤ 1, x ∈ Rd.
(2) The support of ϕk is contained in Uk, for each k ∈ D.
(3)

∑
k∈D ϕk(x) = 1 for each x ∈ Ω.

Then {ϕk : k ∈ D} is called a partition of unity (PU) subordinate to the covering {Uk : k ∈
Λ}. The covering sets {Uk} are called patches.

By almost everywhere partition of unity, we mean {ϕk : k ∈ D} such that the condition 3
of a partition of unity is not satisfied only at finitely many points (2D) or lines (3D) on a part
of the boundary.

LetQ = supp(ϕ). ThenQflt = {x ∈ Q : ϕ(x) = 1} andQn-flt = {x ∈ Q : 0 < |ϕ(x)| < 1}
are called the flat-top part and the non flat-top part of Q, respectively. The function ϕ is said
to be a function with flat-top if the interior of Qflt is non-void. Moreover, {ϕk : k ∈ D} is
called a partition of unity with flat-top whenever it is partition of unity and ϕk is a function
with flat-top for each k ∈ D.

Notice that if f1, · · · , fn are linearly independent on Qflt 6= ∅, the product functions,
ϕ · f1, · · · , ϕ · fn, are also linearly independent on Q. However, if Qflt = ∅, the product
functions, ϕ ·f1, · · · , ϕ ·fn, could be linearly dependent. The hat functions of the conventional
finite element are PU functions without flat-top.

Let Λ be a finite index set and Ω denotes a bounded domain in Rd. Let {xj : j ∈ Λ} be a set
of a finite number of uniformly or non-uniformly spaced points in Rd, that are called particles.
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The reproducing polynomial particle method (RPPM) is a Galerkin approximation method
associated with use of reproducing polynomial shape functions for local approximation func-
tions. Referring to [37], we introduce the following two definitions.

Definition 2.1. (Reproducing Polynomial Property)
Let Ω be a domain in Rn, and k ≥ 0 be an integer. The particle shape function ψj corre-
sponding to the particle xj ∈ Rn, j ∈ Λ, is called reproducing polynomial of order k on Ω (or
simply, reproducing of order k on Ω) if for any x ∈ Ω,

p(x) =
∑
j∈Λ

p(xj)ψj(x)for any p ∈ Pk(Ω),

where Pk(Ω) is the space of all polynomials of degree up to k on Ω and Λ is an index set.

Definition 2.2. (RPP Shape Function) Let k ≥ 0 be an integer. Let X be a set of particles
in Rn with the index set Λ. Then the function ψj associated with the particles xj , j ∈ Λ, are
called reproducing polynomial particle (RPP) shape functions with the reproducing property
of order k (or simply, of reproducing order k) if and only if they are piecewise polynomials and
satisfy the following:

For any x ∈ Ω ⊆ Rn, ∑
j∈Λ

(x− xj)βψj(x) = δ|β|,0, for all β ≤ k. (2.1)

Note that we assume that the RPP shape functions are translation invariant on the uniformly
distributed particles, unless stated otherwise.

The piecewise polynomial RPP shape functions have several features different from Repro-
ducing Kernel Particle (RKP) shape functions. The piecewise polynomial RPP shape functions
are constructed by solving the system (2.1) without using window function, whereas the RKP
shape functions are constructed by solving the system

ψj(x) = w(x− xj)
∑

0≤|α|≤k

(x− xj)αbα(x),

with respect to a specific window function w(x). Therefore, the RKP shape functions are not
piecewise polynomials in general. It means that the RPP shape functions have no relevance to
any specific window functions. However, both RPP and RKP shape functions are constructed
to have the polynomial reproducing property.

Although there are particles on the boundaries because of the selected window function, the
resulting RKP shape functions are not piecewise polynomial, so that can not be piecewise poly-
nomial shape functions. Also, the support of the piecewise polynomial RPP shape functions
are bounded by the particles, whereas the support of the RKP shape functions are bounded by
points between two particles. Moreover, RKP shape functions do not satisfy the Kronecker
delta property, and hence they have difficulties in dealing with Dirichlet boundary conditions.
Whereas RPP shape functions satisfy the Kronecker delta property. Hence we do not need
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additional numerical scheme to impose essential boundary conditions. (See [37, 38] for more
details.)

2.1. Partition of Unity with flat-top in one-dimension. First, we define one-dimensional PU
functions without flat-top, and then we modify the PU functions to have flat-top.

For any positive integer n, Cn−1- piecewise polynomial basic PU functions are constructed
as follows: For integer n ≥ 1, we define a piecewise polynomial function by

ϕ(pp)
gn (x) =


ϕLgn(x) := (1 + x)ngn(x) if x ∈ [−1, 0],

ϕRgn(x) := (1− x)ngn(−x) if x ∈ [0, 1],
0 if |x| ≥ 1,

where gn(x) = a
(n)
0 + a

(n)
1 (−x) + a

(n)
2 (−x)2 + · · · + a

(n)
n−1(−x)n−1 whose coefficients are

inductively constructed by the following recursion formula:

a
(n)
k =


1 if k = 0,
k∑
j=0

a
(n−1)
j if 0 < k ≤ n− 2,

2(a
(n)
n−2) if k = n− 1.

(2.2)

Using the recurrence relation (2.2), gn(x) is as follows:

g1(x) = 1

g2(x) = 1− 2x

g3(x) = 1− 3x+ 6x2

g4(x) = 1− 4x+ 10x2 − x3

g5(x) = 1− 5x+ 15x2 − 35x3 + 70x4

...
...

Then, ϕ(pp)
gn has the following properties whose proofs can be found in [36].

• ϕ(pp)
gn (x) + ϕ

(pp)
gn (x − 1) = 1 for all x ∈ [0, 1]. Hence, {ϕ(pp)

gn (x − j) | j ∈ Z} is a
partition of unity on R.
• ϕ(pp)

gn (x) is a Cn−1 - function.
• The gradient of the scaled basis PU function is bounded as follows:

d

dx
[ϕ(pp)
gn (

x

2δ
)] ≤ C

δ

Note that the constant C is ≤ 0.9 for n ≤ 3
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Using the basis PU function ϕ(pp)
gn , we construct a Cn−1 - PU function with flat-top whose

support is [a− δ, b+ δ] with (a+ δ) < b− δ as follows:

Φ
(δ,n−1)
[a,b] (x) =


ϕLgn(x−(a+δ)

2δ ) if x ∈ [a− δ, a+ δ]

1 if x ∈ [a+ δ, b− δ]
ϕRgn(x−(b−δ)

2δ ) if x ∈ [b− δ, b+ δ]

0 if x /∈ [a− δ, b+ δ].

(2.3)

Note that we assume that δ ≤ b−a
3 to make a PU function have a flat-top.

3. FORMULATIONS FOR FREE VIBRATION AND BUCKLING

3.1. Governing Equations and Variational Formulation of Reissner-Mindlin Plates. Fol-
lowing notations in the book [40], under the Kirchoff hypothesis but relaxing the normality
condition, the displacement field of the first order theory can be expressed in the form

u(x, y, z, t) = u0(x, y, t) + zφx(x, y, t),

v(x, y, z, t) = v0(x, y, t) + zφy(x, y, t), (3.1)

w(x, y, z, t) = w0(x, y, t).

(u0, v0, w0) denotes the displacements of a point on the plane z = 0 and φx and φy are the
rotations of a transverse normal about the y− and x− axis as shown in Fig. 1, respectively

u,z = φx, v,z = φy. (3.2)

In the Reissner-Mindlin plate, bending and shear strains are only considered and they can be
expressed in the vector form as

{εb} =


φx,x

φy,y

φx,y + φy,x

 and {εs} =

{
w0,y + φy

w0,x + φx

}
, respectively. (3.3)

The Euler-Lagrange equations of the Reissner-Mindlin plate can be derived by using the dy-
namic version of the principle of virtual displacements as follows:

Mxx,x +Mxy,y −Qx =
ρh3

12
φx,tt,

Mxy,x +Myy,y −Qy =
ρh3

12
φy,tt,

Qx,x +Qy,y − κw0 + q = ρhw0,tt,

(3.4)

where Mxx, Myy, and Mxy are bending moments and Qx, Qy are transverse force resultants,
defined as follows: 

Mxx

Myy

Mxy

 = D{εb},
{
Qy

Qx

}
= A{εs}. (3.5)
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κ is the force constant, q is the transverse load applied at top and bottom in plate, h is the
thickness of plate. In the relations (3.5), the bending stiffness coefficients D and the extensional
stiffness coefficients A are defined as

D =

 D11 D12 0
D12 D22 0

0 0 D66

 , A =

[
A44 0
0 A55

]
, (3.6)

where

D11 =
E1h

3

12(1− ν12ν21)
, D12 =

ν12E2h
3

12(1− ν12ν21)
, D22 =

E2h
3

12(1− ν12ν21)

D66 =
G12h

3

12
, A44 = G23h, A55 = G13h

where Ei are Young’s moduli, νij are Poisson ratios, and Gij is shear moduli.
For an isotropic plate, E ≡ E1 = E2 and ν ≡ ν12 = ν21 then (3.6) can be simplified as

follows:

D =
Eh3

12(1− ν2)

 1 ν 0
ν 1 0

0 0 (1−ν)
2

 , A =
ksEh

2(1 + ν)

[
1 0
0 1

]
.

Using the relations (3.3), (3.5), and (3.6) and rewriting the Euler-Lagrange equations (3.4) in
terms of the rotational displacements (3.2) , we obtain

D
{
φx,xx + νφy,yx +

(1− ν)

2
(φx,yy + φy,xy)

}
−Ah−2(w0,x + φx) = 0,

D
{
φy,yy + νφx,xy +

(1− ν)

2
(φx,yx + φy,xx)

}
−Ah−2(w0,y + φy) = 0,

−Ah−2(w0,xx + w0,yy + φx,x + φy,y) = q,

(3.7)

where D is the scaled bending modulus, E/[12(1− ν2)], A = Eks/2(1 + ν), and ks is the
transverse shear correction factor.

3.2. Patchwise RPP Approximation Form. Patchwise RPPM is a partition of unity finite el-
ement method (PUFEM) which uses RPP shape functions as local approximation functions. In
this section, we construct local basis functions by using RPP shape functions and PU functions
with flat-top constructed in [32].

Let Ω ⊆ R2 be a polygonal domain, and let δ > 0 be a real number. Let {Ωi | i =
1, 2, · · · , N} be a convex quadrangular partition of Eδ(Ω), where Eδ(Ω) is the δ-extension of
Ω defined by

Eδ(Ω) =
⋃
x∈Ωi

(
x + [−δ,+δ]2

)
.

Ωi is called a patch. Note that the quadrangular patches Ωi are allowed to be convex polygons,
such as triangles, rectangles, non-rectangular quadrangles, pentagons, and so on.
For each i = 1, 2, · · · , N , denote Xi = {xij ∈ R2 | j ∈ Λi} as the particles associated with
the patch Ωi. Note that the particles do not need to be in Ωi. Let {ψij | j ∈ Λi} be the set of
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FIGURE 1. Deformation of a transverse normal according to Kirchoff (classi-
cal), Reissner-Mindlin (first order), and third order plate theories
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Cr-piecewise polynomial shape functions corresponding to the particles xij .
Now we define the local approximation of the displacement filed as follows:

w(x) ≈ whi(x) =

n∑
j=1

Ψi(x)ψij (x)d
(1)
ij ,

φx(x) ≈ φhix (x) =

n∑
j=1

Ψi(x)ψij (x)d
(2)
ij ,

φy(x) ≈ φhiy (x) =

n∑
j=1

Ψi(x)ψij (x)d
(3)
ij ,

(3.8)

for i-th patch Ωi, where partition of unity with flat-top Ψi(x) is the simple form of (2.3) in
two-dimension.
Substituting (3.8) into the variational formulation obtained by Lagrange-Euler equations (3.7)
with assumption of free vibration (i.e force vector is zero.), we can get the following matrix
form

Kd + Md̈ = 0, (3.9)
where

K =

[K11] [K12] [K13]
[K12] [K22] [K23]
[K13] [K23] [K33]

 , M =

[M11] 0 0
0 [M22] 0
0 0 [M33]

 , and d =


{d(1)}

{d(2)}

{d(3)}

 .

(3.10)
Note that d̈ is the accelerations and submatrices [Kij ] and [Mii] are symmetric.
Assuming the harmonic motion we obtain the natural frequencies and the modes of vibration
by solving the generalized eigenproblem [12](

K− ω2M
)
X = 0,

where ω is the natural frequency and X the mode of vibration.
For buckling of plate models, the strain energy for in-plane pre-buckling stresses σ̂x, σ̂y, σ̂xy

without considering external forces is the following:

U =
1

2

∫
Ω
εTb Dεbdxdy +

1

2

∫
Ω
εTsAεsdxdy +

1

2

∫
Ω

[w0,x w0,y]σ̂
0

{
w0,x

w0,y

}
dxdy

+
1

2

∫
Ω

[φx,x φx,y]σ̂
0

{
φx,x
φx,y

}
dxdy +

1

2

∫
Ω

[φy,x φy,y]σ̂
0

{
φy,x
φy,y

}
dxdy, (3.11)

where

σ̂0 =

[
σ̂x σ̂xy
σ̂xy σ̂yy

]
.

We can rewrite the strain energy (3.11) as the following matrix form

Kd + λG = 0, (3.12)
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where K is the global stiffness matrix defined in (3.10),

G =

[G11] 0 0
0 [G22] 0
0 0 [G33]

 ,
which is called geometrical stiffness matrix and λ is a constant by which the in-plane loads
must be multiplied to cause buckling. Thus the buckling loads can be found by solving the
eigenproblem in (3.12).

4. NUMERICAL RESULTS

In order to show the effectiveness of the proposed meshfree method, we observe Reissner-
Mindlin plates in bending, vibration, and buckling by means of the patchwise RPPM. Also, the
comparison of our numerical results with other results are described in the following subsec-
tions.

4.1. A Square Reissner-Mindlin Plate in Bending. One can compare the approximate solu-
tions obtained by the patchwise RPPM with conventional FEM using quadratic basis functions
to see the effectiveness of the patchwise RPPM over FEM for the square Reissner-Mindlin
plate in bending. To this end, we consider a simply-supported and clamped square plates (side
a = 1) under uniform transverse pressure (q = 1), and thickness h. Other properties of the
material are employed by ([12]). The non dimensional transverse displacement is set as

ŵ = wmaxD/qa
4,

where D is the flexural rigidity, wmax is the absolute maximum value of transverse deflection
and it occurs at center point in this problem. The numerical results in Table 1 show that RPPM
is highly effective than conventional FEM even though we use less DOF for bending prob-
lem. Note that SSSS (CCCC) means that simply (clamped) supported boundary conditions are
imposed along four sides of the square Reissner-Mindlin plate.

It verifies that the maximum transverse displacement wmax occurs at the center of the plate
as shown in Fig. 2(a). Moreover, the rotational displacement φy is zero at the pair of two
edges corresponding to the lines y = 0 and y = 1 because of the simply supported boundary
conditions as shown in Fig. 2(b). In Fig. 2(c), twisting moment Mxy is shown in skew-
symmetric form because of the simply supported boundary conditions.

4.2. Reissner-Mindlin Plates in Free Vibration and Buckling. In this subsection, we demon-
strate the effectiveness of the proposed meshfree method (RPPM) in deal with thick plates of
various thickness-to-edge ratios for free vibration and buckling. The ratios, RPP order, correc-
tion factors, non flat-top areas of PU functions that are used for numerical tests are as follows:

(1) we consider a square plate with side a with various thickness-to-width ratios and
boundary conditions in Tables 2 through 7, and a rectangular plate with side a and
length b with various length-to-width ratios as well as thickness-to-width ratios in Ta-
ble 8
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FIGURE 2. (a) Maximum deflection of transverse displacement w occurs at
the center of the plate (b) The rotational displacement φy is zero at the pair of
two edges corresponding to the lines y = 0 and y = 1 because of the simply
supported boundary conditions (c) It occurs in skew symmetric for the twisting
moment because of simply supported bounday conditions
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TABLE 1. non dimensional transverse displacement ŵ of a square Reissner-
Mindlin plate for two different ratios of a/h and boundary conditions under
uniform transverse pressure (q = 1). ŵk means RPP approximate solution
with order of RPP k. Exact solutions, ŵexact’s are Navier solutions with 1000×
1000 terms for each solutions [40].

a/h 10 20

ŵ DOF SSSS CCCC SSSS CCCC
ŵ2 36 0.00404664880 0.000511155881 0.00355041532 0.00150427733
ŵ4 100 0.00427089918 0.00150075015 0.00405976679 0.00125712238
ŵ6 196 0.00427187070 0.00150406450 0.00406142190 0.00126486890
ŵFEM 961 0.004271 0.001503 0.004060 0.001264
ŵexact ∞ 0.004271866 0.00150 0.004061413 0.001260

(2) we consider the Rayleigh-Ritz solutions as exact solutions [9, 19] in Tables 2, 3, and
8, and the Reissner-Mindlin solutions as exact solutions [17] in Tables 4 through 7

(3) Thickness-to-edge, h/a is set 0.1 in Tables 2, 4, and 6, and 0.01 in Tables 3, 5, and 7.
(4) we use the transverse shear correction factor, ks = 0.8601 in Table 2, 0.833 in Tables

3 and 4, and 0.822 in Tables 5, 6 and 7.
(5) In Tables 2 through 7, we use RPP order 6, and we use RPP order 4 in Table 8. Note

that particle shape functions are product of Lagrange interpolation polynomials corre-
sponding to particles x0, . . . , xn, n is an order of RPP shape functions.

(6) we use four patches with δ = 0.05 in all of Tables as shown in Fig. 3(a).
The non-dimensional natural frequency (or fundamental frequency parameter) is given by

ω̄ = ωmna
√
ρ/G,

where ρ is the material density, G = E/2(1 + ν) is the shear modulus. m and n are the
vibration half-waves in axes x and y, respectively.

In Tables 2 and 3, the clamped boundary conditions are imposed on all sides of the square
Reissner-Mindlin plate (CCCC). With the clamped boundary conditions, two different thickness-
to-edge ratios, 0.1 and 0.01 are considered. Also, the shear correction factor is taken as
ks = 0.8601. We compute the first thirteen modes of vibration for both the plates, and the non-
dimensional natural frequencies computed by patchwise RPPM are compared with Rayleigh-
Ritz solutions [8] for each plates in Tables 2 and 3. As you can see the modes from first to
sixth in Tables 2 and 3, RPPM solutions are the closest approximations to the Rayleigh-Ritz
solutions comparing with other solutions, classical Finite Element solutions using quadrilateral
elements [12] and RKP solutions [22] as a comparative numerical result. Moreover, it is worth
noticing that the proposed method use much less number of degrees of freedom than the others.

In Tables 4 and 5, fully simply supported (SSSS) Reissner-Mindlin square plates with dif-
ferent thickness-to-edge ratios, 0.1 and 0.01 are considered. Also the shear correction factor
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FIGURE 3. (a) Partition of rectangular plate into four patches (b) Simply sup-
ported rectangular plates subjected to uniaxial compression

TABLE 2. Fundamental frequency parameters ω̄mn for a CCCC square
Reissner-Mindlin plate with h/a = 0.1, ks = 0.8601, ν = 0.3

Method FEM RKPM RPPM Rayleigh-Ritz
DOF 441 289 196 ·

Mode no.(m,n)
1(1,1) 1.5955 1.5582 1.5910 1.594
2(2,1) 3.0662 3.0182 3.0390 3.039
3(1,2) 3.0662 3.0182 3.0390 3.039
4(2,2) 4.2924 4.1711 4.2627 4.265
5(3,1) 5.1232 5.1218 5.0255 5.035
6(1,3) 5.1730 5.1594 5.0731 5.078
7(3,2) 6.1587 6.0178 6.0808 ·
8(2,3) 6.1587 6.0178 6.0808 ·
9(4,1) 7.6554 7.5169 7.4204 ·
10(1,4) 7.6554 7.5169 7.4204 ·
11(3,3) 7.7703 7.7288 7.6814 ·
12(4,2) 8.4555 8.3985 8.2671 ·
13(2,4) 8.5378 8.3985 8.3426 ·
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TABLE 3. Fundamental frequency parameters ω̄mn for a CCCC square
Reissner-Mindlin plate with h/a = 0.01, ks = 0.8601, ν = 0.3

Method FEM RKPM RPPM Rayleigh-Ritz
DOF 441 289 196 ·

Mode no.(m,n)
1(1,1) 0.175 0.1743 0.1753 0.1754
2(2,1) 0.3635 0.3576 0.3574 0.3576
3(1,2) 0.3635 0.3576 0.3574 0.3576
4(2,2) 0.5358 0.5240 0.5265 0.5274
5(3,1) 0.6634 0.6465 0.6401 0.6402
6(1,3) 0.6665 0.6505 0.6432 0.6402
7(3,2) 0.8266 0.8015 0.8020 ·
8(2,3) 0.8266 0.8015 0.8020 ·
9(4,1) 1.0875 1.0426 1.0317 ·
10(1,4) 1.0875 1.0426 1.0317 ·
11(3,3) 1.1049 1.0628 1.0681 ·
12(4,2) 1.2392 1.1823 1.1820 ·
13(2,4) 1.2446 1.1823 1.1872 ·

TABLE 4. Fundamental frequency parameters ω̄mn for a SSSS square
Reissner-Mindlin plate with h/a = 0.1, ks = 0.833, ν = 0.3

Method FEM RKPM RPPM 3D solution Mindlin solution
DOF 256 289 196 · ·

Mode no.(m,n)
1(1,1) 0.9346 0.922 0.9302 0.932 0.930
2(2,1) 2.2545 2.205 2.2192 2.226 2.219
3(1,2) 2.2545 2.205 2.2192 2.226 2.219
4(2,2) 3.4592 3.377 3.4055 3.421 3.406
5(3,1) 4.3031 4.139 4.1493 4.171 4.149
6(1,3) 4.3031 4.139 4.1493 4.171 4.149
7(3,2) 5.3535 5.170 5.2054 5.239 5.206
8(2,3) 5.3535 5.170 5.2054 5.239 5.206
9(4,1) 6.9413 6.524 6.5237 · 6.520
10(1,4) 6.9413 6.524 6.5237 · 6.520
11(3,3) 7.0318 6.779 6.8338 6.889 6.834
12(4,2) 7.8261 7.416 7.4496 7.511 7.446
13(2,4) 7.8261 7.416 7.4496 7.511 7.446
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TABLE 5. Fundamental frequency parameters ω̄mn for a SSSS square
Reissner-Mindlin plate with h/a = 0.01, ks = 0.833, ν = 0.3

Method FEM RKPM RPPM Mindlin solution
DOF 441 289 196 ·

Mode no.(m,n)
1(1,1) 0.0965 0.0961 0.09628 0.09629
2(2,1) 0.2430 0.2419 0.24057 0.2406
3(1,2) 0.2430 0.2419 0.24057 0.2406
4(2,2) 0.3890 0.3860 0.38470 0.3848
5(3,1) 0.4928 0.4898 0.48077 0.4809
6(1,3) 0.4928 0.4898 0.48077 0.4809
7(3,2) 0.6380 0.6315 0.62463 0.6249
8(2,3) 0.6380 0.6315 0.62463 0.6249
9(4,1) 0.8550 0.8447 0.81910 0.8167
10(1,4) 0.8550 0.8447 0.81910 0.8167
11(3,3) 0.8857 0.8726 0.86410 0.8647
12(4,2) 0.9991 0.9822 0.96229 0.9605
13(2,4) 0.9991 0.9822 0.96229 0.9605

is taken as ks = 0.833. In similar to Table 2 and 3, first thirteen modes of vibration have
been calculated. Our RPPM solutions are compared with the 3-D elasticity solutions in Table
4 and analytical solutions given by Mindlin [17] in both Tables 4 and 5. The accuracy of our
proposed method, patchwise RPPM is more agreeable than other two numerical results, FE so-
lutions using quadrilateral elements [12] and RKP solutions [22] even though patchwise RPPM
uses much less number of degrees of freedom than the others.

In Tables 6 and 7, the clamped and simply supported boundary conditions are imposed
on each pairs of opposite sides in the square Reissner-Mindlin plates (SCSC) with the shear
correction factor ks = 0.822. RPPM solutions are compared with Mindlin solutions [17], and
we can see that our RPPM solutions return better accuracy than the FE solutions [12].

In the buckling plate models, the non-dimensional buckling load intensity factor (or the
critical buckling factor) is defined as

Kb = Ncrb
2/(π2D),

where b is the edge length of the plate as shown in Fig. 3(b), Ncr the critical buckling load,
and D the flexural rigidity. In Table 8, we consider a rectangular Reissner-Mindlin plate with
simply supported on each edge as shown in Fig. 3(b). Also, three different thickness-to-width
ratios, h/b = 0.05, 0.1, 0.2, and five width-to-length ratios, a/b = 0.5, 1, 1.5, 2, 2.5 are con-
sidered. Our results by the proposed method are compared with those of the Ritz method
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TABLE 6. Fundamental frequency parameters ω̄mn for a SCSC square
Reissner-Mindlin plate with h/a = 0.1, ks = 0.822, ν = 0.3

Method FEM RPPM Mindlin solution
DOF 256 196 ·
1(1, 1)Mode no.(m,n) 1.2940 1.3001 1.302
2(2,1) 2.3971 2.3939 2.398
3(1,2) 2.9290 2.8845 2.888
4(2,2) 3.8394 3.8392 3.852
5(3,1) 4.3475 4.2314 4.237
6(1,3) 5.1354 4.9355 4.936
7(3,2) 5.5094 5.4575 ·
8(2,3) 5.8974 5.7897 ·
9(4,1) 6.9384 6.5584 ·
10(1,4) 7.2939 7.2197 ·
11(3,3) 7.7968 7.3062 ·
12(4,2) 7.8516 7.5877 ·
13(2,4) 8.4308 8.0734 ·

TABLE 7. Fundamental frequency parameters ω̄mn for a SCSC square
Reissner-Mindlin plate with h/a = 0.01, ks = 0.822, ν = 0.3

Method FEM RPPM Mindlin solution
DOF 256 196 ·
1(1, 1)Mode no.(m,n) 0.1424 0.1411 0.1411
2(2,1) 0.2710 0.2667 0.2668
3(1,2) 0.3484 0.3376 0.3377
4(2,2) 0.4722 0.4604 0.4608
5(3,1) 0.5191 0.4977 0.4979
6(1,3) 0.6710 0.6279 0.6279
7(3,2) 0.7080 0.6820 ·
8(2,3) 0.7944 0.7524 ·
9(4,1) 0.8988 0.8313 ·
10(1,4) 1.0228 0.9706 ·
11(3,3) 1.0758 1.0069 ·
12(4,2) 1.1339 1.0190 ·
13(2,4) 1.2570 1.1442 ·
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TABLE 8. The critical buckling factors, Kb, of simply supported rectangular
plates with different length-to-width ratios a/b, and thickness-to-width ratios,
t/b, subjected to uniaxial compression

Method RKPM(Uniform particles) RPPM P-ver. Ritz
DOF 289 100 ·

a/b h/b
0.5 0.05 6.0405 6.0344 6.0372

0.1 5.3116 5.4604 5.4777
0.2 3.7157 3.9428 3.9963

1 0.05 3.9293 3.9437 3.9444
0.1 3.7270 3.7809 3.7865
0.2 3.1471 3.2353 3.2637

1.5 0.05 4.2116 4.2567 4.2570
0.1 3.8982 4.0179 4.0250
0.2 3.1032 3.2705 3.3048

2 0.05 3.8657 3.9441 3.9444
0.1 3.6797 3.7813 3.7865
0.2 3.0783 3.2356 3.2637

2.5 0.05 3.9600 4.1213 4.0645
0.1 3.7311 3.9038 3.8638
0.2 3.0306 3.2276 3.2421

presented by Kitipornchai et al. [18] and RKPM with uniform particles [22], and details tab-
ulated in Table 8. The results showed that the RPPM solutions are more accurate than the
solutions obtained by RKPM with much less number of degrees of freedom.

5. CONCLUDING REMARK

In this paper, we proposed the patchwise Reproducing Polynomial Particle Method to com-
pute the non-dimensional transverse displacement ŵ, natural frequency ω̄mn, and buckling load
intensity factor Kb. All numerical results have been compared with FE, RKP, and analytical
solutions. They have shown us that RPP approximate solutions are highly effective than other
numerical methods. Moreover, the proposed method has achieved accurate solutions with less
computational work. These features make the RPPM appealing to obtaining the promising per-
formance on thick plates which have various geometric configuration such as circular, skew or
triangular plates. It will be considered in future work.
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