• Title/Summary/Keyword: Particle Interaction Model

Search Result 131, Processing Time 0.024 seconds

Adsorption kinetic and mechanistic view of aqueous ferric ion onto bio-natural rice grains

  • Al-Anber, Mohammed A.
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.73-88
    • /
    • 2017
  • Adsorption kinetics of aqueous ferric ion ($Fe^{3+}$) onto bio-natural rice grains (BRG) have been studied in a batch system. The influence of contact time (0-180 minutes), the dosage of BRG adsorbent (10, 20, 40, and $60gL^{-1}$), and ambient temperature (27, 37, 47, and $57^{\circ}C$) for the adsorption system have been reported. The equilibrium time achieved after 20 minutes of adsorption contact time. The maximum removal of ferric ion is 99% by using $60gL^{-1}$ of BRG, $T=37^{\circ}C$, and $50mgL^{-1}$ ferric ion solution. Adsorption kinetic and diffusion models, such as pseudo-first order, pseudo-second order, and Weber-Morris intra-particle diffusion model, have been used to describe the adsorption rate and mechanism of the ferric ion onto BRG surface. The sorption data results are fitted by Lagergren pseudo-second order model ($R^2=1.0$). The kinetic parameters, rate constant, and sorption capacities have been calculated. The new information in this study suggests that BRG could adsorb ferric ion from water physiosorption during the first 5 minutes. Afterward, the electrostatic interaction between ferric ion and BGR-surface could take place as a very weak chemisorptions process. Thus, there is no significant change could be noticed in the FTIR spectra after adsorption. I recommend producing BGR as a bio-natural filtering material for removing the ferric ion from water.

Prediction Model of the Outer Radiation Belt Developed by Chungbuk National University

  • Shin, Dae-Kyu;Lee, Dae-Young;Kim, Jin-Hee;Cho, Jung-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.303-309
    • /
    • 2014
  • The Earth's outer radiation belt often suffers from drastic changes in the electron fluxes. Since the electrons can be a potential threat to satellites, efforts have long been made to model and predict electron flux variations. In this paper, we describe a prediction model for the outer belt electrons that we have recently developed at Chungbuk National University. The model is based on a one-dimensional radial diffusion equation with observationally determined specifications of a few major ingredients in the following way. First, the boundary condition of the outer edge of the outer belt is specified by empirical functions that we determine using the THEMIS satellite observations of energetic electrons near the boundary. Second, the plasmapause locations are specified by empirical functions that we determine using the electron density data of THEMIS. Third, the model incorporates the local acceleration effect by chorus waves into the one-dimensional radial diffusion equation. We determine this chorus acceleration effect by first obtaining an empirical formula of chorus intensity as a function of drift shell parameter $L^*$, incorporating it as a source term in the one-dimensional diffusion equation, and lastly calibrating the term to best agree with observations of a certain interval. We present a comparison of the model run results with and without the chorus acceleration effect, demonstrating that the chorus effect has been incorporated into the model to a reasonable degree.

Simulation on mass transfer at immiscible liquid interface entrained by single bubble using particle method

  • Dong, Chunhui;Guo, Kailun;Cai, Qinghang;Chen, Ronghua;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1172-1179
    • /
    • 2020
  • As a Lagrangian particle method, Moving Particle Semi-implicit (MPS) method has great capability to capture interface/surface. In recent years, the multiphase flow simulation using MPS method has become one of the important directions of its developments. In this study, some key methods for multiphase flow have been introduced. The interface tension model in multiphase flow is modified to maintain the smooth of the interface and suitable for the three-phase flow. The mass transfer at immiscible liquid interface entrained by single bubble which could occur in Molten Core-Concrete Interaction (MCCI) has been investigated using this particle method. With the increase of bubble size, the height of entrainment column also increases, but the time of film rupture is slightly different. With the increase of density ratio between the two liquids, the height of entrained column decreases significantly due to the decreasing buoyancy of the denser liquid in the lighter liquid. In addition, the larger the interface tension coefficient is, the more rapidly the entrained denser liquid falls. This study validates that the MPS method has shown great performance for multiphase flow simulation. Besides, the influence of physical parameters on the mass transfer at immiscible interface has also been investigated in this study.

A Study on the Turbulent Flow Characteristics in the Wake of Transom Sterns using PIV Method (동일입자추적기법을 이용한 트랜섬선미 후류 난류유동특성에 관한 연구)

  • Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.352-359
    • /
    • 2012
  • An experiment was carried out to figure out the turbulence flow characteristics in the wake of the transom stern's 2-dimensional section by 2-frame grey level cross correlation PIV method at Re= $3.5{\times}10^3$, Re= $7.0{\times}10^3$. The angles of transom stern are $45^{\circ}$(Model "A"), $90^{\circ}$(Model "B") and $135^{\circ}$(Model "C") respectively. The depth of wetted surface is 40mm from free surface. Strong turbulence intensity appears at the interaction between the flow separation of the bottom of a model and the free surface. This study provides statistic flow information such as turbulence intensity, Reynolds stress and turbulence kinetic energy. Model C type (Raked transom) has low Reynolds stress and turbulence kinetic energy.

Numerical Investigation of Deformation of Thin-walled Tube Under Detonation of Combustible Gas Mixture (가연성 연소 가스의 데토네이션에 의한 얇은 관 변형 모델링)

  • Gwak, Mincheol;Lee, Younghun;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • We present the results of a multi-material numerical investigation of the propagation of a combustible gas mixture detonation in narrow metal tubes. We use an experimentally tuned one step Arrhenius chemical reaction and ideal gas equation of state (EOS) to describe stoichiometric $H_2-O_2$ and $C_2H_4-O_2$ detonations. The purely plastic deformations of copper and steel tubes are modeled using the Mie-Gruneisen EOS and Johnson-Cook strength model. To precisely track the interface motion between the detonating gas and the deforming wall, we use the hybrid particle level-sets within the ghost fluid framework. The calculated results are validated against the experimental data because the results explain the process of the generation and subsequent interaction of the expansion wave with the high-strain-rate deformation of the walls.

Stability in Plasma and Intracellular Uptake of Thermally Denatured Protein-coated anionic Liposomes (열변성 단백질이 결합된 음이온성 리포솜의 혈장 내 안정성 및 세포 내 이입 평가)

  • Lee, Mi-Jung;Hwang, In-Young;Kim, Sung-Kyu;Jung, Suk-Hyun;Jeong, Seo-Young;Seong, Ha-soo;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.6
    • /
    • pp.423-429
    • /
    • 2009
  • Liposomes have been used as one of the efficient carriers for drug delivery. In this study, anionic liposomes of which surface was modified by using both electrostaic interaction between anionic liposomes and cationically charged BSA molecules at lower pH than isoelectric point (pI) of BSA and denaturation of the BSA-coated liposomes by thermal treatment. The thermally denatured BSA-coated liposomes (DBAL) had mean particle diameter of 125.2${\pm}$1.7 nm and zeta potential value of -22.4${\pm}$4.5 mV. Loading efficiency of model drug, doxorubicin (DOX), into liposomes was 83.0${\pm}$2.6%. Results of in vitro stability study of DBAL in blood plasma showed that the mean particle diameter of DBAL 400 did not increase in blood plasma and adsorption of plasma protein was much less than plain or anionic liposomes. Intracellular uptake of DBAL 400 evaluated by confocal microscopy observation was higher than that of PEG liposomes.

Sediment Transport Calculation Considering Cohesive Effects and Its Application to Wave-Induced Topographic Change (점착력을 고려한 표사유동 수치모델의 제안과 파랑에 의한 지형변동의 적용성 검토)

  • Cho, Yong Hwan;Nakamura, Tomoaki;Mizutani, Norimi;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.405-411
    • /
    • 2013
  • A sediment transport calculation considering cohesive force is proposed to deal with the transport phenomena of cohesive sediment. In the proposed calculation, each sand particle is assumed to be surrounded by a thin layer of mud. The critical Shields parameter and bed-load sediment transport rate are modified to include the cohesive force acting on the sand particle. The proposed calculation is incorporated into a two-way coupled fluid-structure-sediment interaction model, and applied to wave-induced topographic change of artificial shallows. Numerical results show that an increase in the content ratio of the mud, cohesive resistance force per unit surface area and water content cause increases in the critical Shields parameter and decreases in the bed-load sediment transport rate, reducing the topographic change of the shallow without changing its trend. This suggests that mixing mud in the pores of the sand particles can reduce the topographic change of shallows.

Flow Characteristic of Cyclone Dust Separator for Marine Sweeping Machine (연마장비용 사이클론 집진기의 유동해석)

  • Park, MinJae;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.512-517
    • /
    • 2014
  • This paper describes the development of new sweeping machine based on Cyclone Technology, which maintains constant suction power and uses it in a industrial applications as a method for dust removed from grinding work. The performance of a cyclone separator is determined by the turbulence characteristics and particle-particle interaction. To achieve this goal, we design cyclone technology based dust separator for sweeping machine has been proposed as a system which is suitable to work utilizing dust suction alternative to conventional manual system. and Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the working fluid that flow into cyclone dust separator in order to design optimal structure of the sweeping machine. The validation of cyclone model with CFD is carried out by comparing with experimental results.

Effect of the circle tunnel on induced force distribution around underground rectangular gallery using theoretical approach, experimental test and particle flow code simulation

  • Vahab, Sarfarazi;Reza, Bahrami;Shadman Mohammadi, Bolbanabad;Fariborz, Matinpoor
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.633-649
    • /
    • 2022
  • In this study, the effect of circle tunnel on the force distribution around underground rectangular gallery was investigated using theoretical approach, experimental test and Particle flow code simulation (PFC). Gypsum model with dimension of 1500×1500 mm was built. Tensile strength of material was 1 MPa. Dimension of central gallery was 100 mm×200 mm and diameter of adjacent tunnel in its right side was 20 mm, 40 mm and 60 mm. Horizontal distance between tunnel wall and gallery edge were 25, 50, 75, 100 and 125 mm. using beam theory, the effect of tunnel diameter and distance between tunnel and gallery on the induced force around gallery was analyzed. In the laboratory test, the rate of loading displacement was set to 0.05 millimeter per minute. Also sensitivity analysis has been done. Using PFC2D, interaction between tunnel and gallery was simulated and its results were compared with experimental and theoretical analysis. The results show that the tensile force concentration has maximum value in center of the rectangular space. The tensile force concentration at the right side of the axisymmetric line of gallery has more than its value in the left side of the galleries axisymmetric line. The tensile force concentration was decreased by increasing the distance between tunnel and rectangular space. In whole of the configurations, the angles of micro cracks fluctuated between 75 and 105 degrees, which mean that the variations of tunnel situation have not any influence on the fracture angle.

RGB Camera-based Real-time 21 DoF Hand Pose Tracking (RGB 카메라 기반 실시간 21 DoF 손 추적)

  • Choi, Junyeong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.942-956
    • /
    • 2014
  • This paper proposes a real-time hand pose tracking method using a monocular RGB camera. Hand tracking has high ambiguity since a hand has a number of degrees of freedom. Thus, to reduce the ambiguity the proposed method adopts the step-by-step estimation scheme: a palm pose estimation, a finger yaw motion estimation, and a finger pitch motion estimation, which are performed in consecutive order. Assuming a hand to be a plane, the proposed method utilizes a planar hand model, which facilitates a hand model regeneration. The hand model regeneration modifies the hand model to fit a current user's hand, and improves robustness and accuracy of the tracking results. The proposed method can work in real-time and does not require GPU-based processing. Thus, it can be applied to various platforms including mobile devices such as Google Glass. The effectiveness and performance of the proposed method will be verified through various experiments.