DOI QR코드

DOI QR Code

Sediment Transport Calculation Considering Cohesive Effects and Its Application to Wave-Induced Topographic Change

점착력을 고려한 표사유동 수치모델의 제안과 파랑에 의한 지형변동의 적용성 검토

  • Cho, Yong Hwan (Department of Civil Engineering, Nagoya University) ;
  • Nakamura, Tomoaki (Department of Civil Engineering, Nagoya University) ;
  • Mizutani, Norimi (Department of Civil Engineering, Nagoya University) ;
  • Lee, Kwang-Ho (Department of Energy Resources and Plant Engineering, Kwandong University)
  • Received : 2013.12.10
  • Accepted : 2013.12.24
  • Published : 2013.12.31

Abstract

A sediment transport calculation considering cohesive force is proposed to deal with the transport phenomena of cohesive sediment. In the proposed calculation, each sand particle is assumed to be surrounded by a thin layer of mud. The critical Shields parameter and bed-load sediment transport rate are modified to include the cohesive force acting on the sand particle. The proposed calculation is incorporated into a two-way coupled fluid-structure-sediment interaction model, and applied to wave-induced topographic change of artificial shallows. Numerical results show that an increase in the content ratio of the mud, cohesive resistance force per unit surface area and water content cause increases in the critical Shields parameter and decreases in the bed-load sediment transport rate, reducing the topographic change of the shallow without changing its trend. This suggests that mixing mud in the pores of the sand particles can reduce the topographic change of shallows.

점착성 표사의 유동 특성을 다루기 위하여 점착력을 고려한 표사유동 수치계산 모델이 제안되었다. 제안된 계산 모델에서는, 각각의 모래 입자는 점토의 얇은 층으로 둘러싸여 있는 상태를 가정했다. 모래 입자에 작용하는 점착력을 적용하기 위해 한계 Shields수와 소류사량을 결정하는 항이 수정되었다. 제안된 표사모델은 3차원 유체 구조 지형변화 연성 수치계산 모델에 적용하여, 인공여울의 지형변화특성을 파악하였다. 수치계산 결과, 각각의 점토 함유율, 단위면적당 작용하는 점착 저항력, 함수비의 증가는 한계 Shields수를 증가 시키고, 반대로 소류사량을 감소시킴으로써 지형변화 경향에는 영향을 미치지 않은 채 여울의 지형변화를 억제하는 것으로 나타났다. 점토를 모래 입자와 혼합함으로써 여울의 지형변화를 감소시킬 수 있는 것을 암시한다.

Keywords

References

  1. Ashida K., Egashira, S. and Kamoto, M. (1982). Study on the erosion and variation of mountain streams - on the erosion and transportation of sand-mud mixtures. Disaster Prevention Research Institute Annuals B, 25(B-2): 349-360 (in Japanese).
  2. Engelund, G. and Fredsoe, J. (1976). A sediment transport model for straight alluvial channels. Nordic Hydrology, 7: 293-306.
  3. Kazama, T., Nakata, K., Tanabe, Y., Hasegawa, M., Oshima, I. and Nagakura, T. (2006). Tidal flats and shallowss created through the utilization of dredged sand and its effectiveness on coastal sea environment and its problem. Proc., JSCE in the Ocean, 22: 607-612 (in Japanese).
  4. Nakamura T., Yim, S.C. and Mizutani, N. (2011). Numerical simulation on local scouring around bottom-mounted movable short cylinder. Proc., Coastal Structures 2011, ASCE, C4-087, 12p.
  5. Nakamura, T., Nezasa, Y. and Mizutani, N. (2012a). Experimental study on evolution of surface profile of artificial shallows and temporal change in pore-water pressure inside surface layer of shallows. J. JSCE Series B2 (Coastal Eng.), 68: I_541-I_545 (in Japanese).
  6. Nakamura, T., Ishihara, R. and Mizutani, N. (2012b). Numerical analysis of topographic change of artificial shallows considering pore-water pressure in surface layer of shallows. J. JSCE Series B2 (Coastal Eng.), 68: I_1161-I_1165 (in Japanese).
  7. Son, M., and Hsu, T.-J. (2008). Flocculation model of cohesive sediment using variable fractal dimension, Environmental Fluid Mech., 8, 55-71. https://doi.org/10.1007/s10652-007-9050-7