Browse > Article
http://dx.doi.org/10.5140/JASS.2014.31.4.303

Prediction Model of the Outer Radiation Belt Developed by Chungbuk National University  

Shin, Dae-Kyu (Department of Astronomy and Space Science Chungbuk National University)
Lee, Dae-Young (Department of Astronomy and Space Science Chungbuk National University)
Kim, Jin-Hee (Department of Astronomy and Space Science Chungbuk National University)
Cho, Jung-Hee (Department of Astronomy and Space Science Chungbuk National University)
Publication Information
Journal of Astronomy and Space Sciences / v.31, no.4, 2014 , pp. 303-309 More about this Journal
Abstract
The Earth's outer radiation belt often suffers from drastic changes in the electron fluxes. Since the electrons can be a potential threat to satellites, efforts have long been made to model and predict electron flux variations. In this paper, we describe a prediction model for the outer belt electrons that we have recently developed at Chungbuk National University. The model is based on a one-dimensional radial diffusion equation with observationally determined specifications of a few major ingredients in the following way. First, the boundary condition of the outer edge of the outer belt is specified by empirical functions that we determine using the THEMIS satellite observations of energetic electrons near the boundary. Second, the plasmapause locations are specified by empirical functions that we determine using the electron density data of THEMIS. Third, the model incorporates the local acceleration effect by chorus waves into the one-dimensional radial diffusion equation. We determine this chorus acceleration effect by first obtaining an empirical formula of chorus intensity as a function of drift shell parameter $L^*$, incorporating it as a source term in the one-dimensional diffusion equation, and lastly calibrating the term to best agree with observations of a certain interval. We present a comparison of the model run results with and without the chorus acceleration effect, demonstrating that the chorus effect has been incorporated into the model to a reasonable degree.
Keywords
energetic electrons; radiation belts; wave-particle interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Angelopoulos V, The THEMIS mission, SSRv 141, 5-34 (2008). http://dx.doi.org/10.1007/s11214-008-9336-1   DOI
2 Baker D, Kanekal SG, Hoxie VC, Henderson MG, Li X, et al., A long-lived relativistic electron storage ring embedded in earth's outer Van Allen Belt, Science 340, 186-190 (2013). http://dx.doi.org/10.1126/science.1233518   DOI
3 Brautigam DH, Albert J, Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, JGR 105, 291-310 (2000). http://dx.doi.org/10.1029/1999JA900344   DOI
4 Carpenter DL, Anderson RR, An ISEE/whistler model of equatorial electron density in the magnetosphere, JGR 97, 1097-1108 (1992). http://dx.doi.org/10.1029/91JA01548   DOI
5 Cully CM, Ergun RE, Steevens K, Nammari A, Westfall J, The THEMIS digital field board, SSRv 141, 343-355 (2008). http://dx.doi.org/10.1007/s11214-008-9417-1   DOI
6 Fok MC, Horne RB, Meredith NP, Glauert SA, Radiation Belt Environment model: Application to space weather nowcasting, JGR 113, A03S08 (2008). http://dx.doi.org/10.1029/2007JA012558   DOI
7 Horne RB, Thorne RM, Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus, GRL 30, 34-1 (2003). http://dx.doi.org/10.1029/2003GL016973   DOI
8 Hwang J, Lee DY, Kim KC, Shin DK, Kim JH, et al., Significant loss of energetic electrons at the heart of the outer radiation belt during weak magnetic storms, JGR 118, 4221-4236 (2013). http://dx.doi.org/10.1002/jgra.50410   DOI   ScienceOn
9 Hilmer RV, Voigt G, A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters, JGR 100, 5613-5626 (1995). http://dx.doi.org/10.1029/94JA03139   DOI
10 Kim KC, Lee DY, Kim HJ, Lyons LR, Lee ES, et al., Numerical calculations of relativistic electron drift loss effect, JGR 113, A09212 (2008). http://dx.doi.org/10.1029/2007JA013011   DOI
11 Kim KC, Lee DY, Kim HJ, Lee ES, Choi CR, Numerical estimates of drift loss and Dst effect for outer radiation belt relativistic electrons with arbitrary pitch angle, JGR 115, A03208 (2010). http://dx.doi.org/10.1029/2009JA014523   DOI
12 Kim KC, Shprits Y, Subbotin D, Ni B, Understanding the dynamic evolution of the relativistic electron slot region including radial and pitch angle diffusion, JGR 116, A10214 (2011). http://dx.doi.org/10.1029/2011JA016684   DOI
13 Lam MM, Horne RB, Meredith NP, Glauert SA, Moffat-Griffin T, et al., Origin of energetic electron precipitation > 30 keV into the atmosphere, JGR 115, A00F08 (2010). http://dx.doi.org/10.1029/2009JA014619   DOI
14 Li W, Thorne RM, Nishimura Y, Bortnik J, Angelopoulos V, et al., THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation, JGR 115, A00F11 (2010). http://dx.doi.org/10.1029/2009JA014845   DOI
15 Larsen BA, Klumpar DM, Gurgiolo C, Correlation between plasmapause position and solar wind variables, JASTP 69, 334-340 (2007). http://dx.doi.org/10.1016/j.jastp.2006.06.017   DOI
16 Lee DY, Shin DK, Kim JH, Cho JH, Kim KC, et al., Longterm loss and re-formation of the outer radiation belt, JGR 118, 3297-3313 (2013). http://dx.doi.org/10.1002/jgra.50357   DOI   ScienceOn
17 Lee JJ, Parks GK, Min KW, McCarthy MP, Lee ES, et al., Relativistic electron dropouts by pitch angle scattering in the geomagnetic tail, Ann. Geophys. 24, 3151-3159 (2006). http://dx.doi.org/10.5194/angeo-24-3151-2006   DOI
18 Li X, Roth I, Temerin M, Wygant J, Hudson MK, et al., Simulation of the prompt energization and transport of radiation particles during the March 24, 2991 SSC, GRL 20, 2423-2426 (1993). http://dx.doi.org/10.1029/93GL02701   DOI   ScienceOn
19 Li X, Baker DN, O'Brien TP, Xie L, Zong QG, Correlation between the inner edge of outer radiation belt electrons and the inner most plasmapause location, GRL 33, L14107 (2006). http://dx.doi.org/10.1029/2006GL026294   DOI
20 Li X, Roth I, Temerin M, Baker DN, Reeves GD, Behavior of MeV electrons at geosynchronous orbit during last two solar cycles, JGR 116, A11207 (2011). http://dx.doi.org/10.1029/2011JA016934   DOI
21 Ling AG, Ginet GP, Hilmer RV, Perry KL, A neural networkbased geosynchronous relativistic electron flux forecasting model, Space Weather 8, S09003 (2010). http://dx.doi.org/10.1029/2010SW000576   DOI
22 Onsager TG, Rostoker G, Kim HJ, Reeves GD, Obara T, et al., Radiation belt electron flux dropouts: Local time, radial and particle-energy dependence, JGR 107, SMP 21-1 (2002). http://dx.doi.org/10.1029/2001JA000187   DOI
23 Meredith NP, Horne RB, Johnstone AD, Anderson RR, The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere, JGR 105, 12907-12917 (2000). http://dx.doi.org/10.1029/2000JA900010   DOI
24 Miyoshi Y, Morioka A, Obara T, Misawa H, Nagai T, et al., Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations, JGR 108, SMP 3-1 (2003). http://dx.doi.org/10.1029/2001JA007542   DOI
25 O'Brien TP, Moldwin MB, Empirical plasmapause models from magnetic indices, GRL 30, 1-1 (2003). http://dx.doi.org/10.1029/2002GL016007   DOI
26 Reeves GD, McAdams KL, Friedel RHW, Acceleration and loss of relativistic electrons during geomagnetic storms, GRL 30, 36-1 (2003). http://dx.doi.org/10.1029/2002GL016513   DOI
27 Roederer JG, Dynamics of geomagnetically trapped radiation (Springer, Berlin 1970).
28 Roux A, Le Contel O, Coillot C, Bouabdellah A, de la Porte B, Alison D, Ruocco S, Vassal MC, The search coil magnetometer for THEMIS, SSRv 141, 265-275 (2008). http://dx.doi.org/10.1007/s11214-008-9455-8   DOI
29 Shin DK, Lee DY, Determining radial boundary conditions of outer radiation belt electrons using THEMIS observations, JGR 118, 2888-2896 (2013). http://dx.doi.org/10.1002/jgra.50334   DOI
30 Shprits YY, Thorne RM, Reeves GD, Friedel R, Radial diffusion modeling with empirical lifetimes: comparison with CRRES observations, Ann. Geophys. 23, 1467-1471 (2005). http://dx.doi.org/10.5194/angeo-23-1467-2005   DOI
31 Su Z, Xiao F, Zheng H, Wang S, Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions, JGR 116, A04205 (2011). http://dx.doi.org/10.1029/2010JA016228   DOI
32 Shprits YY, Subbotin DA, Meredith NP, Elkington SR, Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss, JASTP 70, 1694-1713 (2008). http://dx.doi.org/10.1016/j.jastp.2008.06.014   DOI   ScienceOn
33 Shprits YY, Subbotin DA, Ni B, Evolution of electron fluxes in the outer radiation belt computed with the VERB code, JGR 114, A11209 (2009). http://dx.doi.org/10.1029/2008JA013784   DOI
34 Summers D, Ni B, Meredith NP, Timescales for radiation belt electron acceleration and loss due to resonant waveparticle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves, JGR 112, A04207 (2007). http://dx.doi.org/10.1029/2006JA011993   DOI
35 Tu W, Li X, Chen Y, Reeves GD, Temerin M, Storm-dependent radiation belt electron dynamics, JGR 114, A02217 (2009). http://dx.doi.org/10.1029/2008JA013480   DOI
36 Turner DL, Shprits Y, Hartinger M, Angelopoulos V, Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nature Physics 8, 208-212 (2012). http://dx.doi.org/10.1038/NPHYS2185   DOI