Simulation on mass transfer at immiscible liquid interface entrained by single bubble using particle method |
Dong, Chunhui
(School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)
Guo, Kailun (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) Cai, Qinghang (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) Chen, Ronghua (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) Tian, Wenxi (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) Qiu, Suizheng (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) Su, G.H. (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) |
1 | J. Szekely, Mathematical model for heat or mass transfer at the bubble-stirred interface of two immiscible liquids, Int. J. Heat Mass Transf. 6 (5) (1963) 417-422. DOI |
2 | G.A. Green, J.C. Chen, M.T. Conlin, Onset of entrainment between immiscible liquid layers due to rising gas bubbles, Int. J. Heat Mass Transf. 31 (6) (1988) 1309-1317. DOI |
3 | G.A. Green, J.C. Chen, T.F. Irvien, Heat transfer between stratified immiscible liquid layers driven by gas bubbling across the interface, in: ANS Proceedings of the National Heat Transfer Conference, Houston, TX, 1988. |
4 | G.A. Green, J.C. Chen, M.T. Conlin, Bubbling induced entrainment between stratified liquid layers, Int. J. Heat Mass Transf. 34 (1) (1991) 149-157. DOI |
5 | J.M. Shaw, R. Konduru, The behaviour of large gas bubbles at a liquid-liquid interface. Part 2: liquid entrainment, Can. J. Chem. Eng. 70 (1992) 381-384. DOI |
6 | Z.J. Han, L. Holappa, Mechanisms of iron entrainment into slag due to rising gas bubbles, ISIJ Int. 43 (3) (2003) 292-297. DOI |
7 | D.Y. Song, N. Maruoka, T. Maeyama, H. Shibata, et al., Influence of bottom bubbling condition on metal emulsion formation in lead-salt system, ISIJ Int. 50 (11) (2010) 1539-1545. DOI |
8 | D.Y. Song, N. Maruoka, G.S. Gupta, et al., Modeling of ascending/descending velocity of metal droplet emulsified in Pb-salt system, Metall. Mater. Trans. B 43 (4) (2012) 973-983. DOI |
9 | S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng. 123 (3) (1996) 421-434. DOI |
10 | R.H. Chen, Q.H. Cai, P.H. Zhang, et al., Three-dimensional numerical simulation of the HECLA-4 transient MCCI experiment by improved MPS method, Nucl. Eng. Des. 347 (2019) 95-107. DOI |
11 | R.H. Chen, L. Chen, K.L. Guo, et al., Numerical analysis of the melt behavior in a fuel support piece of the BWR by MPS, Ann. Nucl. Energy 102 (2017) 422-439. DOI |
12 | S. Natsui, R. Nashimoto, H. Takai, et al., SPH simulations of the behavior of the interface between two immiscible liquid stirred by the movement of a gas bubble, Chem. Eng. Sci. 141 (2016) 342-355. DOI |
13 | S. Hysing, S. Turek, D. Kuzmin, et al., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids 60 (11) (2009) 1259-1288. DOI |
14 | X. Li, A. Yamaji, A numerical study of isotropic and anisotropic ablation in MCCI by MPS method, Prog. Nucl. Energy 90 (2016) 46-57. DOI |
15 | R.H. Chen, K.L. Guo, Y.S. Zhang, et al., Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target, Nucl. Eng. Des. 330 (2018) 59-71. DOI |
16 | R.H. Chen, Y.L. Li, K.L. Guo, et al., Numerical investigation on the dissolution kinetics of ZrO2 by molten zircaloy using MPS method, Nucl. Eng. Des. 319 (2017) 117-125. DOI |
17 | R.H. Chen, C.H. Dong, K.L. Guo, et al., Current achievements on bubble dynamics analysis using MPS method, Prog. Nucl. Energy 118 (2020) 1-11. |
18 | H.Y. Yoon, S. Koshizuka, Y. Oka, A mesh-free numerical method for direct simulation of gas-liquid phase interface, Nucl. Sci. Eng. 133 (2) (1999) 192-200. DOI |
19 | J. Liu, S. Koshizuka, Y. Oka, A hybrid particle-mesh method for viscous, incompressible, multiphase flows, J. Comput. Phys. 202 (1) (2005) 65-93. DOI |
20 | W.X. Tian, Y. Ishiwatari, S. Ikejiri, et al., Numerical simulation on void bubble dynamics using moving particle semi-implicit method, Nucl. Eng. Des. 239 (11) (2009) 2382-2390. DOI |
21 | A.J. Suo-Anttila, The Mixing of Immiscible Liquid Layers by Gas Bubbling. Division of Reactor System Safety, Office of Nuclear Regulatory Research, U.S, Nuclear Regulatory Commission, 1988. |
22 | W.X. Tian, Y. Ishiwatari, S. Ikejiri, et al., Numerical computation of thermally controlled steam bubble condensation using Moving Particle Semi-implicit (MPS) method, Ann. Nucl. Energy 37 (1) (2010) 5-15. DOI |
23 | W.X. Tian, R.H. Chen, J.L. Zuo, et al., Numerical simulation on collapse of vapor bubble using particle method, Heat Transf. Eng. 35 (6-8) (2014) 753-763. DOI |
24 | R.H. Chen, W.X. Tian, G.H. Su, et al., Numerical investigation on bubble dynamics during flow boiling using moving particle semi-implicit method, Nucl. Eng. Des. 240 (11) (2010) 3830-3840. DOI |
25 | D.Y. Song, N. Maruoka, T. Maeyama, et al., Influence of bottom bubbling condition on metal emulsion formation in lead-salt system, ISIJ Int. 50 (11) (2010) 1539-1545. DOI |
26 | R.H. Chen, J. Wang, G.H. Su, et al., Analysis of KROTOS KS-2 and KS-4 steam explosion experiments with Texas-VI, Nucl. Eng. Des. 309 (1) (2016) 104-112. DOI |
27 | H. Werle, Enhancement of heat transfer between two horizontal liquid layers by gas injection at the bottom, Nucl. Technol. 59 (1) (1982) 160-164. DOI |
28 | G.T. Duan, B. Chen, S. Koshizuka, et al., Stable multiphase moving particle semi-implicit method for incompressible interfacial flow, Comput. Methods Appl. Mech. Eng. 318 (2017) 636-666. DOI |
29 | R.H. Chen, W.X. Tian, G.H. Su, et al., Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid, Chem. Eng. Sci. 66 (21) (2011) 5055-5063. DOI |
30 | R.H. Chen, M.H. Zhang, K.L. Guo, et al., Numerical study of bubble rising and coalescence characteristics under flow pulsation based on particle method, Science and Technology of Nuclear Installations (2019) 2045751. |
31 | K.L. Guo, R.H. Chen, S.Z. Qiu, et al., An improved multiphase moving particle semi-implicit method in bubble rising simulations with large density ratios, Nucl. Eng. Des. 340 (2018) 370-387. DOI |
32 | G.T. Duan, S. Koshizuka, B. Chen, A contoured continuum surface force model for particle methods, J. Comput. Phys. 298 (2015) 280-304. DOI |
33 | A. Khayyer, H. Gotoh, A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method, Appl. Ocean Res. 32 (1) (2010) 124-131. DOI |
34 | S. Natsui, H. Takai, T. Kumagai, et al., Stable mesh-free moving particle semi-implicit method for direct analysis of gas-liquid two-phase flow, Chem. Eng. Sci. 111 (2014) 286-298. DOI |
35 | N. Shirakawa, H. Horie, Y. Yamamoto, et al., Analysis of the void distribution in a circular tube with the two-fluid particle interaction method, J. Nucl. Sci. Technol. 38 (6) (2001) 392-402. DOI |
36 | N. Shirakawa, Y. Yamamoto, H. Horie, et al., Analysis of subcooled boiling with the two-fluid particle interaction method, J. Nucl. Sci. Technol. 40 (3) (2003) 125-135. DOI |
37 | S. Natsui, H. Takai, T. Kumagai, et al., Multiphase particle simulation of gas bubble passing through liquid/liquid interfaces, Mater. Trans. 55 (11) (2014) 1707-1715. DOI |