Browse > Article
http://dx.doi.org/10.12989/mwt.2017.8.1.073

Adsorption kinetic and mechanistic view of aqueous ferric ion onto bio-natural rice grains  

Al-Anber, Mohammed A. (Department of Chemistry, Faculty of Science, Mu'tah University)
Publication Information
Membrane and Water Treatment / v.8, no.1, 2017 , pp. 73-88 More about this Journal
Abstract
Adsorption kinetics of aqueous ferric ion ($Fe^{3+}$) onto bio-natural rice grains (BRG) have been studied in a batch system. The influence of contact time (0-180 minutes), the dosage of BRG adsorbent (10, 20, 40, and $60gL^{-1}$), and ambient temperature (27, 37, 47, and $57^{\circ}C$) for the adsorption system have been reported. The equilibrium time achieved after 20 minutes of adsorption contact time. The maximum removal of ferric ion is 99% by using $60gL^{-1}$ of BRG, $T=37^{\circ}C$, and $50mgL^{-1}$ ferric ion solution. Adsorption kinetic and diffusion models, such as pseudo-first order, pseudo-second order, and Weber-Morris intra-particle diffusion model, have been used to describe the adsorption rate and mechanism of the ferric ion onto BRG surface. The sorption data results are fitted by Lagergren pseudo-second order model ($R^2=1.0$). The kinetic parameters, rate constant, and sorption capacities have been calculated. The new information in this study suggests that BRG could adsorb ferric ion from water physiosorption during the first 5 minutes. Afterward, the electrostatic interaction between ferric ion and BGR-surface could take place as a very weak chemisorptions process. Thus, there is no significant change could be noticed in the FTIR spectra after adsorption. I recommend producing BGR as a bio-natural filtering material for removing the ferric ion from water.
Keywords
ferric ion; bio-natural rice; adsorption; pseudo-second order; kinetic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 El-Zahhar, A.A., Sharaf El-Deen, S.E.A. and Sheha, R.R. (2013), "Sorption of iron from phosphoric acid solution using polyacrylamide grafted activated carbon", Arab J. Nucl. Sci. Appl., 46(4), 27-38.
2 Guidelines for drinking-water quality (1996), "Health criteria and other supporting information", World Halth Organization, 2nd Edition, 2, Geneva.
3 Hem, G.J.D. and Cropper, W.H. (1959), "Survey of ferrous-ferric chemical equilibria and redox potentials", Geological Survey Water-Supply Paper, 1459-A series, Washington, D.C., U.S.
4 Ho, Y.S. (2004), "Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassumsp biomass by Cruz CCV, da Costa, ACA Henriques CA, Luna AS", Biores. Tech., 93(3), 321-324.   DOI
5 Ho, Y.S. and McKay, G. (1999), "Pseudo-second order model for sorption processes", Process Biochem., 34(5), 451-465.   DOI
6 Horsfall, M., Jnr, M. and Ayebaemi, I.S. (2004), "Studies on the effect of pH on the sorption of $Pb^{+2}$ and $Cd^{+2}$ ions from aqueous solutions by Caladium bicolor (Wild cocoyam) biomass", Environ. Biotech., 7(3), 1-11.
7 Kannan N. and Meenakshisundaram M. (2002), "Adsorption of Congo red on various activated carbons. A comparative study", Water Air Soil Poll., 138, 289-305.   DOI
8 Karthikeyan, G., Andal, N.M. and Anbalagan, K. (2005), "Adsorption studies of ferric on chitin", J. Chem. Sci., 117(6), 663-672.   DOI
9 Kim, D.S. (2004), "Adsorption characteristics of Fe(III) and Fe(III)-NTA complex on granular activated carbon", J. Hazard. Mater., 106B, 67-84.
10 Akaninwor, J.O., Wegwu, M.O. and Iba, I.U. (2007), "Removal of iron, zinc, and magnesium from polluted wastewater samples using thioglycolic acid modified oil-palm", Afr. J. Biochem. Res., 1(2), 011-013.
11 Aksu, Z. (2001), "Equilibrium and kinetic modeling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature", Separat. Purif. Tech., 21, 285-294.   DOI
12 Al-Anber, M. (2007), "Removal a model solution of trivalent iron using jordanian natural zeolites", Asian J. Chem., 19(5), 3493-3501.
13 Al-Anber, M. (2010), "Removal of high-level $Fe^{3+}$ from aqueous solution using Jordanian inorganic materials: Bentonite and quartz", Desalination, 250, 885-891.   DOI
14 Al-Anber, M. (2015a), "Adsorption modeling and decontamination of aqueous $Fe^{+3}$ ions using Jordanian Feldspar (JF)", Int. J. Environ. Sci. Tech., 12, 139-150.   DOI
15 Al-Anber, M. (2016a), "Adsorption thermodynamics of inorganic aqueous ferric ion onto cypress seeds", Biointerf. Res. Appl. Chem., 6(2), 1157-1165
16 Al-Anber, M. (2016b), "Adsorption thermodynamics of inorganic aqueous ferric ion onto rice grain", Applied Water Science. (in Press)
17 Al-Anber, M. and Al-Anber, Z. (2008a), "Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron", Desalination, 225(1-3), 70-81.   DOI
18 Al-Anber, M.A. (2014b), "Adsorption properties of aqueous ferric ion on the natural cotton fiber: kinetic and thermodynamic studies", Desalin. Water Treat., 52(13-15), 2560 - 2571.   DOI
19 Lakshmi Narayanan Rao, K.C., Krishniah, K. and Ashutosh, A. (1994), "Color removal from dye stuff industry effluent using activated carbon", Ind. J. Chem. Tech., 1, 13-19.
20 Lagergren, S. (1898), "Zurtheorie der sogenannten adsorption gelosterstoffe. Kungliga. Svenska Vetenskapsakademiens", Handlingar, 24(4), 1-39.
21 Lauffer, R. (1992), Iron and human diseases, CRC Press, London.
22 Ogbodu, R.O., Omorogie, M.O., Unuabonah, E.I. and Babalola, J.O. (2015), "Biosorption of heavy metals from aqueous solutions by parkia biglobosa biomass: equilibrium, kinetics, and thermodynamic studies", Environ. Prog. Sustain. Energy, 34(6), 1694-1704.   DOI
23 Al-Anber, M.A., Abu-Rayyan, A. and Almogbel, M.S. (2016c), "Removal of inorganic ferric ion from water by using coal of date palm seeds (CDPS)", Biointerf. Res. Appl. Chem., 6(2), 1149-1156.
24 Mohan, D. and Chander, S. (2006), "Removal and recovery of metal ions from acid mine drainage using lignite-a low cost sorbent", J. Hazard. Mater., 137(3), 1545-1553.   DOI
25 Mondal, M.K. (2009), "Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed bed column", J. Environ. Manage., 90, 3266-3271.   DOI
26 Monser, L. and Adhoum, N. (2002), "Modified activated carbon for the removal of copper, zinc, chromium, and cyanide from wastewater", Separat. Purif. Tech., 26(2-3), 137-146.   DOI
27 Nomanbhay, S.F. and Palanisamy, K. (2005), "Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal", Elec. J. Biotech., 8(1), 44-53.
28 Omorogie, M.O., Babalola, J.O., Unuabonah, E.I. and Gong, J.R. (2016a), "Clean technology approach for the competitive binding of toxic metal ions onto MnO2 nano-bioextractant", Clean Tech. Environ. Policy, 18, 171-184.   DOI
29 Omorogie, M.O., Babalola, J.O., Unuabonah, E.I. and Gong, J.R. (2015), "New facile benign agrogenicnanoscale titania material-Remediation potential for toxic inorganic cations", J. Water Proc. Eng., 5, 95-100.   DOI
30 Omorogie, M.O., Babalola, J.O., Unuabonah, E.I., Song, W. and Gong, J.R. (2016b), "Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii seed biomass waste", J. Saudi Chem. Soc., 20, 49-57   DOI
31 Ouki, K., Neufeld, R.D. and Perry, R. (1997), "Use of activated carbon for the recovery of chromium from industrial wastewaters", J. Chem. Tech. Biotech., 70(1), 3-8.   DOI
32 Suthepong, S. and Siraneem, S. (2009), "Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater", J. Environ. Manage., 90, 3283-3289.   DOI
33 Oyedeji, O.A. and Osinfade, G.B. (2010), "Removal of copper (II), iron (III), and lead (II) ions from monocomponent simulated waste effluent by adsorption on coconut husk", Afr. J. Environ. Sci. Tech., 4(6), 382-387.   DOI
34 Ramous, R.L., Flores, P.E., Pina, A.A., Barron, J.M. and Coronado, R.M. (2005), "Adsorption of cadmium (II) from aqueous solution onto activated carbon cloth", Separat. Sci. Tech., 40, 2079-2094.   DOI
35 Senthil Kumar, P., Gayathri, R. and Prabhu Arunkumar, R. (2010), "Adsorption of Fe(III) ions from aqueous solution by Bengal gram husk powder: Equilibrium isotherms and kinetic approach", Elec. J. Environ. Agricult. Food Chem., 9(6), 1047-1058.
36 Tan, J., Wei, X., Ouyang, Y., Fan, J. and Liu R. (2014), "Adsorption properties of copper (II) ion from aqueous solution by starch-grafted polyacrylamide and crosslinked starchgrafted polyacrylamide", Periodica Polytechnica Chemical Eng., 58(2), 131-139.   DOI
37 Unuabonah, E.I., Adedapo, A.O., Nnamdi, C.O., Adewuyi, A., Omorogie, M.O., Adebowale, K.O., Olu-Owolabi, B.I., Ofomaja, A.E. and Taubert, A. (2015), "Successful scale-up performance of a novel papaya-clay combo adsorbent: up-flow adsorption of a basic dye", Desalinat. Water Treat., 56(2), 536-551.   DOI
38 Yeddou, N. and Bensmaili, A. (2007), "Equilibrium and kinetic of iron adsorption by eggshells in a batch system: effect of temperature", Desalination, 206, 127-134.   DOI
39 Wan, W.S., Ghani, S.Ab. and Kamari, A. (2005), "Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads", Biores. Technol., 96, 443-450.   DOI
40 Weber, J.W.J. and Digiano, F.O. (1996), Process dynamics in environmental system, Environmental Science and Technology Series, Wiley, New York.
41 Babalola, J.O., Olowoyo, J.O., Durojaiye, A.O., Olatunde, A.M., Unuabonah, E.I. and Omorogie, M.O. (2016a), "Understanding the removal and regeneration potentials of biogenic wastes for toxic metals and organic dyes", J. Taiwan Inst. Chem. Eng., 58, 490-499.   DOI
42 Zamani, A., Shokri, R., Yaftian, M. and Parizanganeh, A. (2013), "Adsorption of lead, zinc and cadmium ions from contaminated water onto Peganum harmala seeds as biosorbent", Int. J. Environ. Sci. Tech., 10, 93-102.   DOI
43 Zawani, Z., Luqman, C.A. and Choong, Th.S.Y. (2009), "Equilibrium, kinetic and thermodynamic studies:Adsorption of removal black 5 on the palm kernel shell activated carbon (PKS-AC)", Eur. J. Scientif. Res., 37, 63-71.
44 Al-Anber, M.A., Al-Anber, Z.A., Al-Momani, I., Al-Momani, F. and Abu-Salem, Q. (2014a), "The performance of defatted jojoba seeds for the removal of toxic high-concentration of the aqueous ferric ion", Desalin. Water Treat., 52(1-3), 293-304.   DOI
45 Al-Anber, Z.A. and Al-Anber, M.A. (2008b), "Thermodynamics and kinetics studies of iron (III) adsorption by olive cake in a batch system", J. Mexican Chem. Soc., 52(2),108-115.
46 Babalola, J.O., Koiki, B.A., Eniayewu, Y., Salimonu, A., Olowoyo, J.O., Oninla, V.O., Alabi, H.A., Ofomaja, A.E. and Omorogie, M.O. (2016b), "Adsorption efficacy of Cedrela odorata seed waste for dyes: Non linear fractal kinetics and non linear equilibrium studies", J. Environ. Chem. Eng., 4(3), 3527-3536.   DOI
47 Badawi, T., El-Hissewy, A.A. and El-Kaddy, A. (1997), "Cahiers options mediterraneennes, Rice quality: a pluridisciplinary approach", Proceedings of the international Symposium held in Nottingham, UK.
48 Boyd, G.E., Adamson, A.W. and Myers, L.S. (1947), "The exchange adsorption of ion from aqueous solution by organic zeolites, II, kinetics", J. Am. Chem. Soc., 69(11), 2836-2848.   DOI
49 Burke, A., Yilmaz, E., Hasirci, N. and Yilmaz, O. (2002), "Ferric ion removal from solution through adsorption on chitosan", J. Appl. Polym. Sci., 84(6), 1185-1192.   DOI
50 Edwin Vasu, A. (2008), "Adsorption of Ni(II), Cu(II) and Fe(III) from aqueous solution using activated carbon", E-J. Chem., 5, 1-9.   DOI