DOI QR코드

DOI QR Code

Stability in Plasma and Intracellular Uptake of Thermally Denatured Protein-coated anionic Liposomes

열변성 단백질이 결합된 음이온성 리포솜의 혈장 내 안정성 및 세포 내 이입 평가

  • Lee, Mi-Jung (Biomaterials Research Center, Korea Research Institute of Chemical Technology,Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Hwang, In-Young (Biomaterials Research Center, Korea Research Institute of Chemical Technology,Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Kim, Sung-Kyu (Biomaterials Research Center, Korea Research Institute of Chemical Technology) ;
  • Jung, Suk-Hyun (Biomaterials Research Center, Korea Research Institute of Chemical Technology) ;
  • Jeong, Seo-Young (Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Seong, Ha-soo (Biomaterials Research Center, Korea Research Institute of Chemical Technology) ;
  • Cho, Sun-Hang (Biomaterials Research Center, Korea Research Institute of Chemical Technology) ;
  • Shin, Byung-Cheol (Biomaterials Research Center, Korea Research Institute of Chemical Technology)
  • 이미정 (한국화학연구원 바이오소재연구센터,경희대학교 약학대학) ;
  • 황인영 (한국화학연구원 바이오소재연구센터,경희대학교 약학대학) ;
  • 김성규 (한국화학연구원 바이오소재연구센터) ;
  • 정석현 (한국화학연구원 바이오소재연구센터) ;
  • 정서영 (경희대학교 약학대학) ;
  • 성하수 (한국화학연구원 바이오소재연구센터) ;
  • 조선행 (한국화학연구원 바이오소재연구센터) ;
  • 신병철 (한국화학연구원 바이오소재연구센터)
  • Published : 2009.12.20

Abstract

Liposomes have been used as one of the efficient carriers for drug delivery. In this study, anionic liposomes of which surface was modified by using both electrostaic interaction between anionic liposomes and cationically charged BSA molecules at lower pH than isoelectric point (pI) of BSA and denaturation of the BSA-coated liposomes by thermal treatment. The thermally denatured BSA-coated liposomes (DBAL) had mean particle diameter of 125.2${\pm}$1.7 nm and zeta potential value of -22.4${\pm}$4.5 mV. Loading efficiency of model drug, doxorubicin (DOX), into liposomes was 83.0${\pm}$2.6%. Results of in vitro stability study of DBAL in blood plasma showed that the mean particle diameter of DBAL 400 did not increase in blood plasma and adsorption of plasma protein was much less than plain or anionic liposomes. Intracellular uptake of DBAL 400 evaluated by confocal microscopy observation was higher than that of PEG liposomes.

Keywords

References

  1. A.D. Bangham, Liposomes: the Babraham connection, Chem. Phys. Lipids., 64, 275-285 (1993). https://doi.org/10.1016/0009-3084(93)90071-A
  2. A.D. Bangham, M. M. Standish and J. C. Watkis, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Bio., 13, 238-252 (1965). https://doi.org/10.1016/S0022-2836(65)80093-6
  3. G. Blume and G. Cevc, Liposomes for the sustained drug release in vivo, Biochim. Biophys. Acta., 1209, 91–97 (1990).
  4. R. Fraley and D. Papahadjopoulos, New generation of liposomes: the engineering of an efficient vesicle for the delivery of nucleic acid, Trends in Biochem. Sci., 6, 77-80 (1981). https://doi.org/10.1016/0968-0004(81)90028-1
  5. M.C. Woodle and D.D. Lasic, Sterically stabilized liposomes, Biochim. Biophys. Acta., 1113, 171-199 (1992). https://doi.org/10.1016/0304-4157(92)90038-C
  6. T.M. Allen and C. Hansen, Pharmacokinetics of stealth versus conventional liposomes: effect of dose, Biochim. Biophys. Acta., 1068, 133-141 (1991). https://doi.org/10.1016/0005-2736(91)90201-I
  7. S.M. Moghimi and J. Szebeni, Stealth liposomes and long circulating nanoparticle: critical issues in pharmacokinetics. opsonization and protein-binding properties, Prog. Lipid. Res., 42, 463-478 (2003). https://doi.org/10.1016/S0163-7827(03)00033-X
  8. J.I. Yokoe, S. Sakuragi, K. Yamamoto, T. Teragaki, K.I. Ogawara, K. Higaki, N. Katayama, T. Kai, M. Sato and T. Kimura, Albumin-conjugated PEG liposome enhances tumor distribution of liposomal doxorubicin in rats, Int. J. Pharm., 353, 28-34 (2008). https://doi.org/10.1016/j.ijpharm.2007.11.008
  9. J.H. Senior, Fate and behavior of liposome in vivo: a review of controlling factors, Crit. Rev. Ther. Drug Carr. Syst., 3, 123-193 (1987).
  10. J.A. Boomer, H.D. Inerowicz, Z. Zhang, N. Bergstrand, K. Edwards, J.M. Kim and D.H. Thompson, Acid-triggered release from sterically stabilized fusogenic liposomes via a hydrolytic dePEGylation strategy, Langmuir, 19, 6408-6415 (2003). https://doi.org/10.1021/la030104y
  11. L.A. Thomas, S.J. Simon and J. Kent, Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release, Prog. Lipid. Res., 44, 68-97 (2005). https://doi.org/10.1016/j.plipres.2004.12.001
  12. P. Caliceti and F. M. Veronese, Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates, Adv. Drug. Deliv. Rev., 55, 1261-77 (2003). https://doi.org/10.1016/S0169-409X(03)00108-X
  13. S.K. Kim, S.H. Jung, H. Seong and B.C. Shin, Preparation of protein-coated cationic liposomes containing doxorubicin and their binding property of blood plasma protein, Kor. Chem. Soc., 52, 57-65 (2008). https://doi.org/10.5012/jkcs.2008.52.1.057
  14. H.E. Youn, K.W. Kang, J.K. Chung and D.S. Lee, Nanomedicine: drug delivery systems and nanoparticle targeting, Nucl. Med. Mol. Imaging., 42, 337-346 (2008).
  15. H. Pelham, Heat shock proteins: coming in from the cold, Nature., 332, 776-777 (1988). https://doi.org/10.1038/332776a0
  16. J.K. Myers, C.N. Pace and J.M. Scholtz, Denaturant m values and heat capacity change: relation to changes in accessible surface areas of protein unfolding, Protein Sci., 4, 2138-2148 (1995). https://doi.org/10.1002/pro.5560041020
  17. I.A.S. Drummond and R.A. Steinhardt, The role of oxidative stress in the induction of drosophila heat-shock proteins. Exp. Cell Res., 173, 439-449 (1987). https://doi.org/10.1016/0014-4827(87)90284-9
  18. J.H. Lee, S.I. Ahn, J.H. Park, Y.T. Kim, G. Khang, J.M. Rhee and H. B. Lee, Solid lipid nanoparticles as a drug delivery system for peptides and proteins, Regenerative Medi., 5, 215-228 (2008).
  19. Y. Barenholz, Liposome application: problems and prospects, Curr. Opin. Colloid. Interface. Sci., 6, 66-77 (2001). https://doi.org/10.1016/S1359-0294(00)00090-X
  20. G. Haran, R. Cohen, L.K. Bar and Y. Barenholz, Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases, Biochim. Biophys. Acta., 1151, 201-215 (1993). https://doi.org/10.1016/0005-2736(93)90105-9
  21. H. Baumgarten, A simple microplate assay for the determination of cellular protein, J. Immunol. Methods., 82, 25-37 (1985). https://doi.org/10.1016/0022-1759(85)90221-2
  22. S.H. Jung, S.K. Kim, S.H. Jung, H. Seong, S.H. Cho and B.C. Shin, Intracellular delivery and anti-tumor activity of polyethyleneglycol liposomes containing cationic lipid, J. kor. Pharm. Sci., 3, 163-169 (2008).
  23. X.B. Xiong, Y. Huang, W.I. Lu, X. Zhang, T. Nagai, and Q. Zhang, Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic, J. Control Release., 107, 262-275 (2005). https://doi.org/10.1016/j.jconrel.2005.03.030
  24. R. Gorodetsky, L. Levdansky, A. Vexler, I. Shimeliovich, I. Kassis, M. B. Moshe, S. Magdassi and G. Marx, Liposome transduction into cells enhanced by haptotactic peptides(Haptides) homologous to fibrinogen C-termini, Gene Ther. Mol. Biol., 11, 477-488 (2004).
  25. K. Na, pH-sensitive polymeric micelles for the effective delivery of anti-caner drug, Kor. Soc. Gastrointest Cancer., 49, 314-319 (2007).
  26. N. Dan, Effect of liposome charge and PEG polymer layer thickness on cell-liposome electrostatic interactions, Biochim. Biophys. Acta., 1564, 343-348 (2002). https://doi.org/10.1016/S0005-2736(02)00468-6
  27. T. Hwang, H.D. Han, C.K. Song, H. Seong, J.H. Kim, X. Chen and B.C. Shin, Anticancer drug-phospholipid conjugate for enhance for enhintracellular drug delivery, Macromol. Symp., 249, 109-115 (2007). https://doi.org/10.1002/masy.200750318
  28. B. Haley and E. Frenkel, Nanoparticles for drug delivery in cancer treatment, Urol Oncol., 26, 57-64 (2008). https://doi.org/10.1016/j.urolonc.2007.03.015