• Title/Summary/Keyword: Parcel Area Error

Search Result 13, Processing Time 0.023 seconds

Practical Study of Area Error Formula in Numerical and Graphical Cadastral Surveying (수치 및 도해 지적측량의 면적오차 계산식에 관한 현실적 고찰)

  • Yang, Chul Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2017
  • In cadastral surveying, there are problems that no area error is allowed where numerical surveying is carried out, and allowable area error is specified irrespective of parcel shape where graphic surveying is carried out. In this research, we derived a general formula of parcel area error necessary for grasping these two problems. The calculations using the derived formula showed that where the coordinate error of the boundary point is set to 5cm+10ppm practically, then even a small parcel of $100 m^2$ includes non-negligible area error of $0.71m^2$. And, it is found that the area error specified by the current egulation is based on a rectangular parcel of 1:5 aspect ratio. These results show that the area error of polygon parcel can be determined by a single formula by specifying the coordinate error of the boundary points, and can be used to revise the current regulations that can be applied uniformly regardless of surveying methods.

A Study on the Problems and Improvements of the Area Error Formula in Cadastral Surveying (지적측량의 면적오차 계산공식에 대한 문제점 및 개선방안 고찰)

  • Yang, Chul-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.5-16
    • /
    • 2022
  • Based on the general formula for the area error of a polygon and rectangular parcel, the constant term 0.0262 × M (scale denominator) of the area error calculation formula prescribed by the Enforcement Decree was analyzed. As a result, it is found that the formula appropriately reflects the characteristics of the graphical surveying as a typical rectangular parcel model, but quantitatively allows a relatively large area error. In addition, it is found that, even if the area is the same, 50% more area error than a square parcel could be calculated depending on the shape of the parcel, and that the allowable area error should be different when dividing a parcel. Based on the analysis, furthermore, this study shows a solution that can solve the problems at once from the point of cadastral surveying. These are, the problem of reflecting the accuracy of the surveying, the problem of reflecting the size and shape of the parcel, and the problem whether a single area error formula can be used without having to distinguish between graphical and numerical surveyings. The new formula that solves these problems will bring about improvements in many related factors and promote the development of digital cadastral system.

Parcel Boundary Demarcation in Residential Area Using High Resolution Aerial Images (고해상도 항공영상을 이용한 주거지역 필지경계 설정에 관한 연구)

  • Park, Chiyoung;Lee, Jaeone
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.59-68
    • /
    • 2015
  • As part of an effort to leap smart cadastre system by doing rearrangement of various mismatches in the land register, the cadastre renovation project is being recently conducted. In response to this demand, this paper proposes an image-based rapid parcel boundary demarcation plan using the high resolution aerial image with a GSD (Ground Sample Distance) of 5cm that matches to real ground boundary situation in residential area. To review the feasibility and accuracy of this proposed methodology, we compared the accuracy of parcel boundary point and parcel area extracted from the digital stereo plotting on the basis of results of cadastral boundary surveying and land register over the selected two test areas. The comparative accuracy result of all boundary points by digital stereo plotting is satisfied with accuracy requirement according to the criteria of the enforcement regulation of cadastral surveying, whereas it exceeded allowable error of ${\pm}0.07m$, more strictly specified in the Special Act on Cadastral Renovation. And about 20% of the total 70 parcels extracted by digital plotting are out of area tolerance in Jecheon study area, and 10% of the total 19 parcels in Suwon study area. The parcels exceeding accuracy limit are mostly due to the occlusion caused by building roof or eaves, and the obstacles such as trees existing on the boundary. Furthermore, an object identification is impossible in image because of vague boundary reference in case of nonexistence of man-made structures or natural features. Therefore, the utilization of boundary identification stickers is recommended as a solution for these types of land parcel.

Accuracy of Parcel Boundary Demarcation in Agricultural Area Using UAV-Photogrammetry (무인 항공사진측량에 의한 농경지 필지 경계설정 정확도)

  • Sung, Sang Min;Lee, Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • In recent years, UAV Photogrammetry based on an ultra-light UAS(Unmanned Aerial System) installed with a low-cost compact navigation device and a camera has attracted great attention through fast and accurate acquirement of geo-spatial data. In particular, UAV Photogrammetry do gradually replace the traditional aerial photogrammetry because it is able to produce DEMs(Digital Elevation Models) and Orthophotos rapidly owing to large amounts of high resolution image collection by a low-cost camera and image processing software combined with computer vision technique. With these advantages, UAV-Photogrammetry has therefore been applying to a large scale mapping and cadastral surveying that require accurate position information. This paper presents experimental results of an accuracy performance test with images of 4cm GSD from a fixed wing UAS to demarcate parcel boundaries in agricultural area. Consequently, the accuracy of boundary point extracted from UAS orthoimage has shown less than 8cm compared with that of terrestrial cadastral surveying. This means that UAV images satisfy the tolerance limit of distance error in cadastral surveying for the scale of 1: 500. And also, the area deviation is negligible small, about 0.2%(3.3m2), against true area of 1,969m2 by cadastral surveying. UAV-Photogrammetry is therefore as a promising technology to demarcate parcel boundaries.

A Study on Converting Cadastral Coordinate System into Global Coordinate System (지적좌표계의 세계좌표 변환 연구)

  • Park, Chun-Soo;Hong, Sung-Eon;Park, Jong-Oh;Jeong, Taek-Seung;Sung, Baek-Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.105-114
    • /
    • 2010
  • This study considers and analyzes the position and area errors and the related problems through the experimental study of the converting process from the cadastral coordinate system to the global coordinate system. Also, based on the result, the points of improvement have been considered. According to the conversion of the coordinates in the study area, the standard deviations for the conversion of coordinates in regard to every parcel boundary point (478 points in total) have been calculated as X=0.0079m and Y=0.0153m respectively. It can be considered that such values are extremely excellent. Also, after analyzing the area errors, it has been found that there is a difference of $0.062m^2$ on average. Such a difference stays within the range of the allowable error tolerance specified by the current laws. Therefore, in regard to the limited area which is subject to the study, it can be concluded that the difference is not great in differences of the position or the area. As a result, the converting process into the global coordinate system is possible.

Accuracy Assessment of Parcel Boundary Surveying with a Fixed-wing UAV versus Rotary-wing UAV (고정익 UAV와 회전익 UAV에 의한 농경지 필지경계 측량의 정확도 평가)

  • Sung, Sang Min;Lee, Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.535-544
    • /
    • 2017
  • UAVs (Unmanned Aerial Vehicle) are generally classified into fixed-wing and rotary-wing type, and both have very different flight characteristics each other during photographing. These can greatly effect on the quality of images and their productions. In this paper, the change of the camera rotation angle at the moment of photographing was compared and analyzed by calculating orientation angles of each image taken by both types of payload. Study materials were acquired at an altitude of 130m and 260m with fixed-wing, and at an altitude of 130m with rotary-wing UAV over an agricultural land. In addition, an accuracy comparison of boundary surveying methods between UAV photogrammetry and terrestrial cadastral surveying was conducted in two parcels of the study area. The study results are summarized as follows. The differences at rotation angles of images acquired with between two types of UAVs at the same flight height of 130m were significantly very large. On the other hand, the distance errors of parcel boundary surveying were not significant between them, but almost the same, about within ${\pm}0.075m$ in RMSE (Root Mean Square Error). The accuracy of boundary surveying with a fixed-wing UAV at 260m altitude was quite variable, $0.099{\sim}0.136m$ in RMSE. In addition, the error of area extracted from UAV-orthoimages was less than 0.2% compared with the results of the cadastral survey in the same two parcels used for the boundary surveying, In conclusion, UAV photogrammetry can be highly utilized in the field of cadastral surveying.

Analysis on Pilot Survey for Cadastral Non-correspondence Arrangements (지적불부합지의 정리를 위한 실험측량 분석 연구)

  • 강태석;권규태
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.269-275
    • /
    • 2003
  • The cadastral system which accomplishes the base of national land administration with accuracy of proper data and the cadastral maintenance quickly is agreeing with the actual place in information ages in Inundation. But even in spite of many efforts, various Problems are exposed in accuracy of the data on the cadastral maps and local situation must agree accurately from the process which propels cadastral information systems. Therefore, it must be carried out the cadastral non correspondence arrangement first of all in link of the plan which it corrects the error of existing data and computerization quickly. It summarizes the research as follows ; Cadastral non correspondence of the land boundaries on the map and actual circumstance does not agree with cadastral maps accurately, The lands which exceed the standards with the position error excess of 50cm on lil ,200 and 240cm on 1/6,000 areas on the map scale are the registration correction objectives. It is investigated that the cadastral non correspondence parcels occur in various cause and long period, the area error corrections are mainly objectives, and about 80% of the test area comes to reveal within permitted the limit of the measurement of planimetric area for cadastral survey, so it is not difficult with the fact that the compensation back which it follows in area increase and decrease and the location error correction becomes the important object fer the cadastral non correspondence arrangement projects.

A study on the transformation of cadastral map using Geo-Spatial Information System (지형공간정보체계를 활용한 지적도의 변환에 관한 연구)

  • Kim, Jung-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.111-120
    • /
    • 2000
  • A cadastral map that is base map on Land Information System is divided by two categories, graphical and digital cadastre. And digital cadastre can be displayed with location coordinates of nodes that depict parcel boundary on digital cadastral records. The transformation of digital cadastral records means that imported text data of node coordinate would be transformed into system data. This study was implemented to search reasons of errors resulted from transformation of graphic data and then to analyze the accuracy in terms of Position and area. For this, checking of software used in Geo-Spatial Information System was implemented at first and it was found that the accuracy is up by using double precision in coordinate transformation. On the position accuracy the errors at nodes was erased during making topology and the errors did not effect other nodes. On the area may the area errors because of being in error limit of allowable area had no problems in using of system.

  • PDF

Comparison of Areal Accuracy in Cadastral Uncoincidence using the RTK-GPS (RTK-GPS를 이용한 지적불부합지의 면적 정확도 비교)

  • Jang, Sang-Kyu;Kim, Jin-Soo;Lee, Oong-Lak
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.107-114
    • /
    • 2002
  • The cadastral surveying is essential for the effective management of a country, the D/B building of NGIS. Many of GPS applications require a positioning accuracy of several centimeters for rover in real-times. But, to achieve higher positioning accuracies in real-time, the double differencing technique should be implemented using carrier phase data. Corrected observations at the reference station can be transmitted and used to form double difference observations at the rover using a data link. In this study, the area accuracy of cadastral survey using the RTK GPS will be assessed, and will produce area of parcel of land. As the result of comparison among area by TS, planer surveying and RTK GPS. parcels-register for site is analyzed by this data. The results show that mean error of area calculated min. $2.42m^{2}{\sim}\;max.\;13.69m^{2}$ and RMSE calculated min. $0.00329\;{\sim}\;max.\;0.01846$.

  • PDF

Detecting Cadastral Discrepancy Method based on MMAS (MMAS 기법에 의한 지적불부합지 탐색기법)

  • Cho, Sung-Hwan;Huh, Yong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.149-160
    • /
    • 2015
  • This paper suggests the MMAS(Map Matching using Additional Surveying) method to improve the cadastral discrepancy search algorithm that currently does not include corrections of mis-represented parcel data. The MMAS is a method to search for cadastral discrepancy after correcting mis-represented parcel data using nearby anchor points confirmed by surveys. The MMAS first transforms the coordinate system of the digital cadastral map by overlaying anchor points obtained in the field surveying process over the corresponding edges of buildings and facility points on the digital topographic map. Then, it searches for cadastral discrepancy by checking if the area differences exceed the tolerance limit. This method improves the current method for searching for cadastral discrepancy by performing the process after correcting extortion of the digital cadastral map. This helps to identify cadastral discrepancies that are not detectable within the distorted digital cadastral map. With our experiment, this method identified more discrepancies compared to the method without the correcting the distortion of the digital cadastral map. We believe this method will be able to help the national cadastral re-survey by identifying potential cadastral discrepancy more accurately.