• Title/Summary/Keyword: Parametric approach

Search Result 704, Processing Time 0.11 seconds

A Geometric Constraint Solver for Parametric Modeling

  • Jae Yeol Lee;Kwangsoo Kim
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.211-222
    • /
    • 1998
  • Parametric design is an important modeling paradigm in CAD/CAM applications, enabling efficient design modifications and variations. One of the major issues in parametric design is to develop a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this appear, we propose a new approach to geometric constraint solving that employs a graph-based method to solve the ruler-and-compass constructible configurations and a numerical method to solve the ruler-and-compass non-constructible configurations, in a way that combines the advantages of both methods. The geometric constraint solving process consists of two phases: 1) planning phase and 2) execution phase. In the planning phase, a sequence of construction steps is generated by clustering the constrained geometric entities and reducing the constraint graph in sequence. in the execution phase, each construction step is evaluated to determine the geometric entities, using both approaches. By combining the advantages of the graph-based constructive approach with the universality of the numerical approach, the proposed approach can maximize the efficiency, robustness, and extensibility of geometric constraint solver.

  • PDF

New Parametric Affine Modeling and Control for Skid-to-Turn Missiles (STT(Skid-to-Turn)미사일의 매개변수화 어파인 모델링 및 제어)

  • Chwa, Dong-Kyoung;Park, Jin-Young;Kim, Jinho;Song, Chan-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.727-731
    • /
    • 2000
  • This paper presents a new practical autopilot design approach to acceleration control for tail-controlled STT(Skid-to-Turn) missiles. The approach is novel in that the proposed parametric affine missile model adopts acceleration as th controlled output and considers the couplings between the forces as well as the moments and control fin deflections. The aerodynamic coefficients in the proposed model are expressed in a closed form with fittable parameters over the whole operating range. The parameters are fitted from aerodynamic coefficient look-up tables by the function approximation technique which is based on the combination of local parametric models through curve fitting using the corresponding influence functions. In this paper in order to employ the results of parametric affine modeling in the autopilot controller design we derived a parametric affine missile model and designed a feedback linearizing controller for the obtained model. Stability analysis for the overall closed loop sys-tem is provided considering the uncertainties arising from approximation errors. the validity of the proposed modeling and control approach is demonstrated through simulations for an STT missile.

  • PDF

A Hybrid Parametric Translator Using the Feature Tree and the Macro File (피처 트리와 매크로 파일을 이용하는 하이브리드 파라메트릭 번역기)

  • 문두환;김병철;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.240-247
    • /
    • 2002
  • Most commercial CAD systems provide parametric modeling functions, and by using these capabilities designers can edit a CAD model in order to create design variants. It is necessary to transfer parametric information during a CAD model exchange to modify the model inside the receiving system. However, it is not possible to exchange parametric information of CAD models based on the cur-rent version of STEP. The designer intents which are contained in the parametric information can be lost during the STEP transfer of CAD models. This paper introduces a hybrid CAB model translator, which also uses the feature tree of commercial CAD systems in addition to the macro file to allow transfer of parametric information. The macro-parametric approach is to exchange CAD models by using the macro file, which contains the history of user commands. To exchange CAD models using the macro-parametric approach, the modeling commands of several commercial CAD systems are analyzed. Those commands are classified and a set of standard modeling commands has been defined. As a neutral fie format, a set of standard modeling commands has been defined. Mapping relations between the standard modeling commands set and the native modeling commands set of commercial CAD systems are defined. The scope of the current version is limited to parts modeling and assemblies are excluded.

Approach zone of parametric analysis for hardness mitigation of connection (접속부의 강성완화를 위한 Approach zone의 매개분석)

  • Son, Ji-Hyun;Choi, Jin-You;Oh, Ji-Taek;Hwang, Won-Sup
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.558-564
    • /
    • 2006
  • When vehicles pass the connection between the bridge and earthwork, the difference of both sections' stiffness produces an increasing wheelload. As a consequence, it results in the excessive vibration of vehicles and the damage of bearing system. In general, steel plate girder railway bridges without ballast track have larger stiffness than the bridge with ballast, and produces larger impulse on the bridge superstructure. Thus, it is necessary to reduce the differences of both stiffness. This study presents parametric studies on the behavior of plate girder bridges and their tracks by means of various stiffnesses and the length of approach zone. The results of numerical study showed that the smaller the stiffness of both sides and the longer the length of approach zone, the variation of wheelload becomes smaller. Hence, it gives less burden into the plate girder bridges and their tracks. It is expected that the results of parametric study can be used as a preliminary data for the determination of economical length on the approach zone and the stiffness of both sides.

  • PDF

A new approach for content-based video retrieval

  • Kim, Nac-Woo;Lee, Byung-Tak;Koh, Jai-Sang;Song, Ho-Young
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.24-28
    • /
    • 2008
  • In this paper, we propose a new approach for content-based video retrieval using non-parametric based motion classification in the shot-based video indexing structure. Our system proposed in this paper has supported the real-time video retrieval using spatio-temporal feature comparison by measuring the similarity between visual features and between motion features, respectively, after extracting representative frame and non-parametric motion information from shot-based video clips segmented by scene change detection method. The extraction of non-parametric based motion features, after the normalized motion vectors are created from an MPEG-compressed stream, is effectively fulfilled by discretizing each normalized motion vector into various angle bins, and by considering the mean, variance, and direction of motion vectors in these bins. To obtain visual feature in representative frame, we use the edge-based spatial descriptor. Experimental results show that our approach is superior to conventional methods with regard to the performance for video indexing and retrieval.

ML estimation using Poisson HGLM approach in semi-parametric frailty models

  • Ha, Il Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1389-1397
    • /
    • 2016
  • Semi-parametric frailty model with nonparametric baseline hazards has been widely used for the analyses of clustered survival-time data. The frailty models can be fitted via an auxiliary Poisson hierarchical generalized linear model (HGLM). For the inferences of the frailty model marginal likelihood, which gives MLE, is often used. The marginal likelihood is usually obtained by integrating out random effects, but it often requires an intractable integration. In this paper, we propose to obtain the MLE via Laplace approximation using a Poisson HGLM approach for semi-parametric frailty model. The proposed HGLM approach uses hierarchical-likelihood (h-likelihood), which avoids integration itself. The proposed method is illustrated using a numerical study.

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.

A Parametric design study for free-formed super tall building using BIM (비정형 초고층 빌딩의 Parametric Design을 위한 BIM 활용에 관한 연구)

  • Kim, Hyeong-Il
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.1
    • /
    • pp.109-118
    • /
    • 2012
  • The Purpose of this study is to develop a design process of free-formed super tall buildings with parametric design approach using BIM. Before BIM tools like Revit was developed, it is considered as very time consuming process and requires extensive efforts and costs for making free-formed super tall building modeling. Current trends of free-formed super tall building are for proofing city's economic strength and symbol. New digital tools have been developed and used for pursuing many design methods for building design. In this study, BIM based Parametric design approach is studied to seek for possibility of generating free-formed super tall building fast, easily, and accurately.

A METHOD USING PARAMETRIC APPROACH WITH QUASINEWTON METHOD FOR CONSTRAINED OPTIMIZATION

  • Ryang, Yong-Joon;Kim, Won-Serk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 1989
  • This paper proposes a deformation method for solving practical nonlinear programming problems. Utilizing the nonlinear parametric programming technique with Quasi-Newton method [6,7], the method solves the problem by imbedding it into a suitable one-parameter family of problems. The approach discussed in this paper was originally developed with the aim of solving a system of structural optimization problems with frequently appears in various kind of engineering design. It is assumed that we have to solve more than one structural problem of the same type. It an optimal solution of one of these problems is available, then the optimal solutions of thel other problems can be easily obtained by using this known problem and its optimal solution as the initial problem of our parametric method. The method of nonlinear programming does not generally converge to the optimal solution from an arbitrary starting point if the initial estimate is not sufficiently close to the solution. On the other hand, the deformation method described in this paper is advantageous in that it is likely to obtain the optimal solution every if the initial point is not necessarily in a small neighborhood of the solution. the Jacobian matrix of the iteration formula has the special structural features [2, 3]. Sectioon 2 describes nonlinear parametric programming problem imbeded into a one-parameter family of problems. In Section 3 the iteration formulas for one-parameter are developed. Section 4 discusses parametric approach for Quasi-Newton method and gives algorithm for finding the optimal solution.

  • PDF

Parametric identification of a cable-stayed bridge using least square estimation with substructure approach

  • Huang, Hongwei;Yang, Yaohua;Sun, Limin
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.425-445
    • /
    • 2015
  • Parametric identification of structures is one of the important aspects of structural health monitoring. Most of the techniques available in the literature have been proved to be effective for structures with small degree of freedoms. However, the problem becomes challenging when the structure system is large, such as bridge structures. Therefore, it is highly desirable to develop parametric identification methods that are applicable to complex structures. In this paper, the LSE based techniques will be combined with the substructure approach for identifying the parameters of a cable-stayed bridge with large degree of freedoms. Numerical analysis has been carried out for substructures extracted from the 2-dimentional (2D) finite element model of a cable-stayed bridge. Only vertical white noise excitations are applied to the structure, and two different cases are considered where the structural damping is not included or included. Simulation results demonstrate that the proposed approach is capable of identifying the structural parameters with high accuracy without measurement noises.